Loading…
Inequalities between Power Means and Convex Combinations of the Harmonic and Logarithmic Means
We prove that αH(a,b)+(1−α)L(a,b)>M(1−4α)/3(a,b) for α∈(0,1) and all a,b>0 with a≠b if and only if α∈[1/4,1) and αH(a,b)+(1−α)L(a,b)
Saved in:
Published in: | Journal of Applied Mathematics 2012-01, Vol.2012 (2012), p.594-607-342 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We prove that αH(a,b)+(1−α)L(a,b)>M(1−4α)/3(a,b) for α∈(0,1) and all a,b>0 with a≠b if and only if α∈[1/4,1) and αH(a,b)+(1−α)L(a,b) |
---|---|
ISSN: | 1110-757X 1687-0042 |
DOI: | 10.1155/2012/471096 |