Loading…

Comparative Analysis of Deep Learning Models for Optimal EEG-Based Real-Time Servo Motor Control

This study harnesses EEG signals to enable the real-time control of servo motors, utilizing the OpenBCI Community Dataset to identify and assess brainwave patterns related to motor imagery tasks. Specifically, the dataset includes EEG data from 52 subjects, capturing electrical brain activity while...

Full description

Saved in:
Bibliographic Details
Published in:Eng (Basel, Switzerland) Switzerland), 2024-09, Vol.5 (3), p.1708-1736
Main Authors: Angelakis, Dimitris, Ventouras, Errikos C., Kostopoulos, Spiros, Asvestas, Pantelis
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study harnesses EEG signals to enable the real-time control of servo motors, utilizing the OpenBCI Community Dataset to identify and assess brainwave patterns related to motor imagery tasks. Specifically, the dataset includes EEG data from 52 subjects, capturing electrical brain activity while participants imagined executing specific motor tasks. Each participant underwent multiple trials for each motor imagery task, ensuring a diverse and comprehensive dataset for model training and evaluation. A deep neural network model comprising convolutional and bidirectional long short-term memory (LSTM) layers was developed and trained using k-fold cross-validation, achieving a notable accuracy of 98%. The model’s performance was further compared against recurrent neural networks (RNNs), multilayer perceptrons (MLPs), and Τransformer algorithms, demonstrating that the CNN-LSTM model provided the best performance due to its effective capture of both spatial and temporal features. The model was deployed on a Python script interfacing with an Arduino board, enabling communication with two servo motors. The Python script predicts actions from preprocessed EEG data to control the servo motors in real-time. Real-time performance metrics, including classification reports and confusion matrices, demonstrate the seamless integration of the LSTM model with the Arduino board for precise and responsive control. An Arduino program was implemented to receive commands from the Python script via serial communication and control the servo motors, enabling accurate and responsive control based on EEG predictions. Overall, this study presents a comprehensive approach that combines machine learning, real-time implementation, and hardware interfacing to enable the precise and real-time control of servo motors using EEG signals, with potential applications in the human–robot interaction and assistive technology domains.
ISSN:2673-4117
2673-4117
DOI:10.3390/eng5030090