Loading…

Enhancing Channelized Feature Interpretability Using Deep Learning Predictive Modeling

Automating geobodies using insufficient labeled training data as input for structural prediction may result in missing important features and a possibility of overfitting, leading to low accuracy. We adopt a deep learning (DL) predictive modeling scheme to alleviate detection of channelized features...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2022-09, Vol.12 (18), p.9032
Main Authors: Mad Sahad, Salbiah, Tan, Nian Wei, Sajid, Muhammad, Jones, Ernest Austin, Abdul Latiff, Abdul Halim
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Automating geobodies using insufficient labeled training data as input for structural prediction may result in missing important features and a possibility of overfitting, leading to low accuracy. We adopt a deep learning (DL) predictive modeling scheme to alleviate detection of channelized features based on classified seismic attributes (X) and different ground truth scenarios (y), to imitate actual human interpreters’ tasks. In this approach, diverse augmentation method was applied to increase the accuracy of the model after we were satisfied with the refined annotated ground truth dataset. We evaluated the effect of dropout as a training regularizer and facies’ spatial representation towards optimized prediction results, apart from conventional hyperparameter tuning. From our findings, increasing batch size helps speedup training speed and improve performance stability. Finally, we demonstrate that the designed Convolutional Neural Network (CNN) is capable of learning channelized variation from complex deepwater settings in a fluvial-dominated depositional environment while producing outstanding mean Intersection of Union (IoU) (95%) despite utilizing 6.4% from the overall dataset and avoiding overfitting possibilities.
ISSN:2076-3417
2076-3417
DOI:10.3390/app12189032