Loading…
A Study of Sonar Image Stabilization of Unmanned Surface Vehicle Based on Motion Sensor for Inspection of Underwater Infrastructure
In order to detect damage to underwater infrastructure for inspection, an expensive survey by a diver is generally conducted, but it carries the risk of accidents. Accordingly, the development of an effective unmanned underwater survey system is an important priority. The unmanned underwater survey...
Saved in:
Published in: | Remote sensing (Basel, Switzerland) Switzerland), 2020-11, Vol.12 (21), p.3481 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In order to detect damage to underwater infrastructure for inspection, an expensive survey by a diver is generally conducted, but it carries the risk of accidents. Accordingly, the development of an effective unmanned underwater survey system is an important priority. The unmanned underwater survey system used in this study is equipped with sonar towed by an- Unmanned Surface Vehicle (USV) to conduct the survey, but the USV is more affected by the waves and swells than a common boat. As a result, distorted sonar data causes errors in the information regarding the damage of underwater infrastructure. This study proposes the method of sonar image stabilization to minimize the errors of the distortion of sonar data by using a motion sensor. The change in the amount of the roll was calculated from the motion sensor, and the sonar data was corrected in the sonar ping unit. The sonar image stabilization algorithm was verified through field tests, and the error rate before and after correction was reduced by 15%. It is expected that, in the future, the proposed approach will be used as a standard data-gathering system for securing the reliability of sonar data when performing an unmanned underwater survey. |
---|---|
ISSN: | 2072-4292 2072-4292 |
DOI: | 10.3390/rs12213481 |