Loading…

Design of an Extended Interacting Multiple Models Adaptive Estimator for Attitude Determination of a Stereoimagery Satellite

We will design an extended interacting multiple models adaptive estimator (EIMMAE) for attitude determination of a stereoimagery satellite. This algorithm is based on interacting multiple models (IMM) extended kalman filters (EKF) using star sensor and gyroscope data. In this method, the motion of s...

Full description

Saved in:
Bibliographic Details
Published in:International journal of aerospace engineering 2011, Vol.2011 (2011), p.1-19
Main Authors: Bolandi, Hossein, Fani Saberi, Farhad, Mehrjardi Eslami, Amir
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We will design an extended interacting multiple models adaptive estimator (EIMMAE) for attitude determination of a stereoimagery satellite. This algorithm is based on interacting multiple models (IMM) extended kalman filters (EKF) using star sensor and gyroscope data. In this method, the motion of satellite during stereoimaging manoeuvres is partitioned into two different modes: “manoeuvring motion” mode and “uniform motion” mode. The proposed algorithm will select the suitable Kalman filter structure to estimate gyro errors accurately in order to maintain the peak attitude estimation error less enough at the beginning of manoeuvres while the satellite is in “manoeuvring motion” mode and then will select the suitable star sensor measurement noise level at the end of manoeuvres while the satellite is in “uniform motion” mode to reduce attitude estimation errors. It will be shown that using the proposed algorithm, the attitude estimation accuracy of stereoimagery satellite will be increased considerably. The effectiveness of the proposed algorithm will be examined and compared with the previous proposed methods through numerical simulations.
ISSN:1687-5966
1687-5974
DOI:10.1155/2011/890502