Loading…

Plasminogen modulates formation of reactive oxygen species in human platelets

Reactive oxygen species (ROS) are considered to be important signalling molecules controlling many platelet functions. ROS production has been shown to be augmented by platelet activation, however, plasminogen (Pg) has not been studied in the context of modulating intraplatelet ROS levels. The aim o...

Full description

Saved in:
Bibliographic Details
Published in:Ukrainian biochemical journal 2018-11, Vol.90 (6), p.31-40
Main Authors: Tykhomyrov, A. A., Zhernosekov, D. D., Guzyk, M. M., Korsa, V. V., Grinenko, T. V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Reactive oxygen species (ROS) are considered to be important signalling molecules controlling many platelet functions. ROS production has been shown to be augmented by platelet activation, however, plasminogen (Pg) has not been studied in the context of modulating intraplatelet ROS levels. The aim of this study was to investigate the ability of different Pg forms to affect platelet metabolic activity/survival and intracellular ROS production in resting and activated platelets. Platelets isolated from donor plasma were pre-treated with Glu- or Lys-Pg (1.2 µM) and activated by thrombin (1.0 NIH unit/ml) or collagen (1.25 mg/ml). MTT assay was adapted to estimate total mitochondrial dehydrogenase activity, while intracellular ROS levels were monitored with the use of H2DCF-DA probe by flow cytometry. Lys-Pg was shown to slightly, but significantly, mitigate MTT reduction (P < 0.05 vs. control platelets). Two-fold elevation in metabolic activity of platelets stimulated by thrombin as compared to untreated cells was observed. However, this activation was less exhibi­ted in the case of platelets pre-incubated with either Glu- of Lys-Pg, with a predominant effect of Lys-Pg. Unlike thrombin, collagen treatment dramatically suppressed metabolic activity of platelets by 60% compared to control (P < 0.05). Glu- or Lys-Pg pre-incubation had no effects on the activity of collagen-stimulated platelets. Two subpopulations of platelets were observed with distinct characteristics of intracellular ROS formation. Elevated ROS production was demonstrated in these populations of both thrombin- and collagen-treated platelets. Pg (Lys-form to greater extent) enhanced intracellular ROS generation in thrombin-stimulated platelets. These findings suggest that augmented ROS generation within platelets pre-treated with Pg followed by their stimulation may result in down-regulation of their survival and functional activity. This study adds to our understanding one more possible mechanism of Pg impact on the platelet function.
ISSN:2409-4943
2413-5003
DOI:10.15407/ubj90.06.031