Loading…
Enhancing EEG and sEMG Fusion Decoding Using a Multi-Scale Parallel Convolutional Network with Attention Mechanism
Electroencephalography (EEG) and surface electromyography (sEMG) have been widely used in the rehabilitation training of motor function. However, EEG signals have poor user adaptability and low classification accuracy in practical applications, and sEMG signals are susceptible to abnormalities such...
Saved in:
Published in: | IEEE transactions on neural systems and rehabilitation engineering 2024-01, Vol.32, p.1-1 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Electroencephalography (EEG) and surface electromyography (sEMG) have been widely used in the rehabilitation training of motor function. However, EEG signals have poor user adaptability and low classification accuracy in practical applications, and sEMG signals are susceptible to abnormalities such as muscle fatigue and weakness, resulting in reduced stability. To improve the accuracy and stability of interactive training recognition systems, we propose a novel approach called the Attention Mechanism-based Multi-Scale Parallel Convolutional Network (AM-PCNet) for recognizing and decoding fused EEG and sEMG signals. Firstly, we design an experimental scheme for the synchronous collection of EEG and sEMG signals and propose an ERP-WTC analysis method for channel screening of EEG signals. Then, the AM-PCNet network is designed to extract the time-domain, frequency-domain, and mixed-domain information of the EEG and sEMG fusion spectrogram images, and the attention mechanism is introduced to extract more fine-grained multi-scale feature information of the EEG and sEMG signals. Experiments on datasets obtained in the laboratory have shown that the average accuracy of EEG and sEMG fusion decoding is 96.62%. The accuracy is significantly improved compared with the classification performance of single-mode signals. When the muscle fatigue level reaches 50% and 90%, the accuracy is 92.84% and 85.29%, respectively. This study indicates that using this model to fuse EEG and sEMG signals can improve the accuracy and stability of hand rehabilitation training for patients. |
---|---|
ISSN: | 1534-4320 1558-0210 1558-0210 |
DOI: | 10.1109/TNSRE.2023.3347579 |