Loading…

Silibinin Inhibits Cell Ferroptosis and Ferroptosis-Related Tissue Injuries

Ferroptosis is involved in various tissue injuries including neurodegeneration, ischemia-reperfusion injury, and acute liver injury. Ferroptosis inhibitors exhibit promising clinical potential in the treatment of various diseases. As a traditional chemical, silymarin has been widely used in healthca...

Full description

Saved in:
Bibliographic Details
Published in:Antioxidants 2023-12, Vol.12 (12), p.2119
Main Authors: Duan, Wentao, Ou, Zexian, Huang, Yuxing, Zhang, Yifan, Zhang, Lan, Zhao, Yanan, He, Ruikun, Zhang, Yihan, Ge, Yuanlong, Lou, Huiling, Ju, Zhenyu, Hu, Qian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Ferroptosis is involved in various tissue injuries including neurodegeneration, ischemia-reperfusion injury, and acute liver injury. Ferroptosis inhibitors exhibit promising clinical potential in the treatment of various diseases. As a traditional chemical, silymarin has been widely used in healthcare and clinical applications to treat liver injuries in which ferroptosis is involved. Silibinin is the main active ingredient of silymarin. However, the effect of silibinin on ferroptosis and ferroptosis-related diseases remains unclear. Here, we found that silibinin inhibited death in different kinds of cells caused by ferroptosis inducers including RSL3 and erastin. Moreover, silibinin alleviated lipid peroxidation induced by RSL3 without affecting the labile iron pool. Next, the antioxidant activity of silibinin was demonstrated by the DPPH assay. In vivo, silibinin strikingly relieved tissue injuries and ferroptosis in the liver and kidney of glutathione peroxidase 4 (GPX4) knockout C57 BL/6J mice. Moreover, silibinin effectively rescued renal ischemia-reperfusion, a well-known ferroptosis-related disease. In conclusion, our study revealed that silibinin effectively inhibits cell ferroptosis and ferroptosis-related tissue injuries, implicating silibinin as a potential chemical to treat ferroptosis-related diseases.
ISSN:2076-3921
2076-3921
DOI:10.3390/antiox12122119