Loading…

Ser9p-GSK3β Modulation Contributes to the Protective Effects of Vitamin C in Neuroinflammation

The prolonged activation of microglia and excessive production of pro-inflammatory cytokines can lead to chronic neuroinflammation, which is an important pathological feature of Parkinson's disease (PD). We have previously reported the protective effect of Vitamin C (Vit C) on a mouse model of...

Full description

Saved in:
Bibliographic Details
Published in:Nutrients 2024-04, Vol.16 (8), p.1121
Main Authors: Ruggiero, Melania, Cianciulli, Antonia, Calvello, Rosa, Porro, Chiara, De Nuccio, Francesco, Kashyrina, Marianna, Miraglia, Alessandro, Lofrumento, Dario Domenico, Panaro, Maria Antonietta
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The prolonged activation of microglia and excessive production of pro-inflammatory cytokines can lead to chronic neuroinflammation, which is an important pathological feature of Parkinson's disease (PD). We have previously reported the protective effect of Vitamin C (Vit C) on a mouse model of PD. However, its effect on microglial functions in neuroinflammation remains to be clarified. Glycogen synthase kinase 3β (GSK3β) is a serine/threonine kinase having a role in driving inflammatory responses, making GSK3β inhibitors a promising target for anti-inflammatory research. In this study, we investigated the possible involvement of GSK3β in Vit C neuroprotective effects by using a well-known 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced animal model of PD and a cellular model of neuroinflammation, represented by Lipopolysaccharide (LPS)-activated BV-2 microglial cells. We demonstrated the ability of Vit C to decrease the expression of different mediators involved in the inflammatory responses, such as TLR4, p-IKBα, and the phosphorylated forms of p38 and AKT. In addition, we demonstrated for the first time that Vit C promotes the GSK3β inhibition by stimulating its phosphorylation at Ser9. This study evidenced that Vit C exerts an anti-inflammatory function in microglia, promoting the upregulation of the M2 phenotype through the activation of the Wnt/β-catenin signaling pathway.
ISSN:2072-6643
2072-6643
DOI:10.3390/nu16081121