Loading…
Redes neurais artificiais para a modelagem do volume de madeira e biomassa do cerradão com dados de satélite
Resumo:O objetivo deste trabalho foi avaliar a eficácia da aplicação de modelos de análise de regressão e redes neurais artificiais (RNAs) na predição do volume de madeira e da biomassa acima do solo, da vegetação arbórea em área de cerradão. Volume de madeira e biomassa foram estimados com equações...
Saved in:
Published in: | Pesquisa agropecuaria brasileira 2015-09, Vol.50 (9), p.829-839 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | eng ; por |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Resumo:O objetivo deste trabalho foi avaliar a eficácia da aplicação de modelos de análise de regressão e redes neurais artificiais (RNAs) na predição do volume de madeira e da biomassa acima do solo, da vegetação arbórea em área de cerradão. Volume de madeira e biomassa foram estimados com equações alométricas desenvolvidas para a área de estudo. Os índices de vegetação, como variáveis preditoras, foram estimados a partir de imagens do sensor LISS-III, e a área basal foi determinada por medições na floresta. A precisão das equações foi verificada pela correlação entre os valores estimados e observados (r), erro-padrão da estimativa (Syx) e gráfico residual. As equações de regressão para o volume de madeira total e do fuste (0,96 e 0,97 para r, e 11,92 e 9,72% para Syx, respectivamente) e para a biomassa (0,91 e 0,92 para r, e 22,73 e 16,80% para Syx, respectivamente) apresentaram bons ajustes. As redes neurais também apresentaram bom ajuste com o volume de madeira (0,99 e 0,99 para r, e 4,93 e 4,83% para Syx) e a biomassa (0,97 e 0,98 r, e 8,92 e 7,96% para Syx, respectivamente). A área basal e os índices de vegetação foram eficazes na estimativa do volume de madeira e biomassa para o cerradão. Os valores reais de volume de madeira e biomassa não diferiram estatisticamente dos valores estimados pelos modelos de regressão e redes neurais (χ2ns); contudo, as RNAs são mais acuradas. |
---|---|
ISSN: | 1678-3921 |
DOI: | 10.1590/S0100-204X2015000900012 |