Loading…

EEG-Based EMG Estimation of Shoulder Joint for the Power Augmentation System of Upper Limbs

Brain–Machine Interfaces (BMIs) have attracted much attention in recent decades, mainly for their applications involving severely disabled people. Recently, research has been directed at enhancing the ability of healthy people by connecting their brains to external devices. However, there are curren...

Full description

Saved in:
Bibliographic Details
Published in:Symmetry (Basel) 2020-11, Vol.12 (11), p.1851
Main Authors: Liang, Hongbo, Yu, Yingxin, Mochida, Mika, Liu, Chang, Ueda, Naoya, Li, Peirang, Zhu, Chi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Brain–Machine Interfaces (BMIs) have attracted much attention in recent decades, mainly for their applications involving severely disabled people. Recently, research has been directed at enhancing the ability of healthy people by connecting their brains to external devices. However, there are currently no successful research reports focused on robotic power augmentation using electroencephalography (EEG) signals for the shoulder joint. In this study, a method is proposed to estimate the shoulder’s electromyography (EMG) signals from EEG signals based on the concept of a virtual flexor–extensor muscle. In addition, the EMG signal of the deltoid muscle is used as the virtual EMG signal to establish the EMG estimation model and evaluate the experimental results. Thus, the shoulder’s power can be augmented by estimated virtual EMG signals for the people wearing an EMG-based power augmentation exoskeleton robot. The estimated EMG signal is expressed via a linear combination of the features of EEG signals extracted by Independent Component Analysis, Short-time Fourier Transform, and Principal Component Analysis. The proposed method was verified experimentally, and the average of the estimation correlation coefficient across different subjects was 0.78 (±0.037). These results demonstrate the feasibility and potential of using EEG signals to provide power augmentation through BMI technology.
ISSN:2073-8994
2073-8994
DOI:10.3390/sym12111851