Loading…

Empirical Investigation of Properties for Additive Manufactured Aluminum Metal Matrix Composites

Laser additive manufacturing with mixed powders of aluminum alloy and silicon carbide (SiC) or boron carbide (B4C) is investigated in this experiment. With various mixing ratios of SiC/Al to form metal matrix composites (MMC), their mechanical and physical properties are empirically investigated. Pa...

Full description

Saved in:
Bibliographic Details
Published in:Applied Mechanics 2024-07, Vol.5 (3), p.450-474
Main Authors: Bai, Shuang, Liu, Jian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Laser additive manufacturing with mixed powders of aluminum alloy and silicon carbide (SiC) or boron carbide (B4C) is investigated in this experiment. With various mixing ratios of SiC/Al to form metal matrix composites (MMC), their mechanical and physical properties are empirically investigated. Parameters such as laser power, scan speed, scan pattern, and hatching space are optimized to obtain the highest density for each mixing ratio of SiC/Al. The mechanical and thermal properties are systematically investigated and compared with and without heat treatment. It shows that 2 wt% of SiC obtained the highest strength and Young’s modulus. Graded composite additive manufacturing (AM) of MMC is also fabricated and characterized. Various types of MMC devices, such as heat sink using graded SiC MMC and grid type three-dimensional (3D) neutron collimators using boron carbide (B4C), were also fabricated to demonstrate their feasibility for applications.
ISSN:2673-3161
2673-3161
DOI:10.3390/applmech5030026