Loading…
Machine Learning Tools to Assist the Synthesis of Antibacterial Carbon Dots
The emergence and rapid spread of multidrug-resistant bacteria (MRB) caused by the excessive use of antibiotics and the development of biofilms have been a growing threat to global public health. Nanoparticles as substitutes for antibiotics were proven to possess substantial abilities for tackling M...
Saved in:
Published in: | International journal of nanomedicine 2024-01, Vol.19, p.5213-5226 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The emergence and rapid spread of multidrug-resistant bacteria (MRB) caused by the excessive use of antibiotics and the development of biofilms have been a growing threat to global public health. Nanoparticles as substitutes for antibiotics were proven to possess substantial abilities for tackling MRB infections via new antimicrobial mechanisms. Particularly, carbon dots (CDs) with unique (bio)physicochemical characteristics have been receiving considerable attention in combating MRB by damaging the bacterial wall, binding to DNA or enzymes, inducing hyperthermia locally, or forming reactive oxygen species.
Herein, how the physicochemical features of various CDs affect their antimicrobial capacity is investigated with the assistance of machine learning (ML) tools.
The synthetic conditions and intrinsic properties of CDs from 121 samples are initially gathered to form the raw dataset, with Minimum inhibitory concentration (MIC) being the output. Four classification algorithms (KNN, SVM, RF, and XGBoost) are trained and validated with the input data. It is found that the ensemble learning methods turn out to be the best on our data. Also, ε-poly(L-lysine) CDs (PL-CDs) were developed to validate the practical application ability of the well-trained ML models in a laboratory with two ensemble models managing the prediction.
Thus, our results demonstrate that ML-based high-throughput theoretical calculation could be used to predict and decode the relationship between CD properties and the anti-bacterial effect, accelerating the development of high-performance nanoparticles and potential clinical translation. |
---|---|
ISSN: | 1178-2013 1176-9114 1178-2013 |
DOI: | 10.2147/IJN.S451680 |