Loading…

Biochemically Programmable Isothermal PCR

Isothermal PCR can be performed by imposing a static temperature gradient that continuously circulates reagents through denaturing, annealing, and extension conditions inside a PCR tube. But despite early promise, these systems have yet to demonstrate performance and repeatability sufficient for ado...

Full description

Saved in:
Bibliographic Details
Published in:Advanced science 2024-11, Vol.11 (41), p.e2404688-n/a
Main Authors: Kim, MinGin, Ravisankar, Vijay, Hassan, Yassin A., Ugaz, Victor M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c4155-22a9900e9ea932cfa95ad1f57ec52eca8ee69a793be4df2c671ba2a03421dd243
container_end_page n/a
container_issue 41
container_start_page e2404688
container_title Advanced science
container_volume 11
creator Kim, MinGin
Ravisankar, Vijay
Hassan, Yassin A.
Ugaz, Victor M.
description Isothermal PCR can be performed by imposing a static temperature gradient that continuously circulates reagents through denaturing, annealing, and extension conditions inside a PCR tube. But despite early promise, these systems have yet to demonstrate performance and repeatability sufficient for adoption in validated laboratory tests because the rate‐limiting extension step is inherently short and cannot be increased independently of the other stages in a temperature cycle. Here, a discovery that enables isothermal PCR to be achieved with statistically robust repeatability that meets or exceeds diagnostic assay requirements (false positive/negative rate
doi_str_mv 10.1002/advs.202404688
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_55ad9993f8224c6e9979a14dc619d427</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_55ad9993f8224c6e9979a14dc619d427</doaj_id><sourcerecordid>3104527959</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4155-22a9900e9ea932cfa95ad1f57ec52eca8ee69a793be4df2c671ba2a03421dd243</originalsourceid><addsrcrecordid>eNqFkU1vEzEQhlcIRKvSK0cUiQscEuyxvfacUAlfkSpR8XW1Jt7ZZCNv3NpJUf49G1KilgsnW57Hj2bmrarnUkykEPCGmtsyAQFa6Nq5R9UpSHRj5bR-fO9-Up2XshJCSKOslu5pdaIQagRbn1av33UpLLnvAsW4G13ltMjU9zSPPJqVtFly7imOrqZfn1VPWoqFz-_Os-rHxw_fp5_Hl18-zaYXl-OgpTFjAEIUgpEJFYSW0FAjW2M5GOBAjrlGsqjmrJsWQm3lnICE0iCbBrQ6q2YHb5No5a9z11Pe-USd__OQ8sJT3nQhsjeDGhFV6wB0qBnRIkndhFpio8EOrrcH1_V23nMTeL3JFB9IH1bW3dIv0q2Xw65cbffdvLoz5HSz5bLxfVcCx0hrTtvilRTagEWDA_ryH3SVtnk97GqgQIMzWu-pyYEKOZWSuT12I4Xfp-r3qfpjqsOHF_dnOOJ_MxwAfQB-dZF3_9H5i_c_v6ERRv0G7_esCg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3124285449</pqid></control><display><type>article</type><title>Biochemically Programmable Isothermal PCR</title><source>PubMed Central Free</source><source>Wiley Online Library Open Access</source><source>Publicly Available Content Database</source><source>Coronavirus Research Database</source><creator>Kim, MinGin ; Ravisankar, Vijay ; Hassan, Yassin A. ; Ugaz, Victor M.</creator><creatorcontrib>Kim, MinGin ; Ravisankar, Vijay ; Hassan, Yassin A. ; Ugaz, Victor M.</creatorcontrib><description>Isothermal PCR can be performed by imposing a static temperature gradient that continuously circulates reagents through denaturing, annealing, and extension conditions inside a PCR tube. But despite early promise, these systems have yet to demonstrate performance and repeatability sufficient for adoption in validated laboratory tests because the rate‐limiting extension step is inherently short and cannot be increased independently of the other stages in a temperature cycle. Here, a discovery that enables isothermal PCR to be achieved with statistically robust repeatability that meets or exceeds diagnostic assay requirements (false positive/negative rate &lt;8% at 95% confidence) by manipulating the interplay between the DNA replication biochemistry (via the amplicon GC content) and the microscale circulatory flow inside a PCR tube is reported. Surprisingly, optimal performance depends on selecting primer sequences that replicate high GC content amplicons, contradicting established PCR primer design rules. This innovative thermocycling approach accelerates PCR to speeds rivaling ultra‐fast instruments, enabling rapid, repeatable isothermal DNA analysis across a range of targets relevant to diagnostics and pathogen detection. Rapid isothermal PCR is achieved with 100% repeatability by manipulating the interplay between the reaction's biochemistry (via the amplicon GC content) and the lava‐lamp‐like microscale flow established inside a PCR tube whose upper and lower surfaces are isothermally maintained at annealing and denaturing temperatures.</description><identifier>ISSN: 2198-3844</identifier><identifier>EISSN: 2198-3844</identifier><identifier>DOI: 10.1002/advs.202404688</identifier><identifier>PMID: 39269276</identifier><language>eng</language><publisher>Germany: John Wiley &amp; Sons, Inc</publisher><subject>biochemistry ; DNA - genetics ; DNA Primers - genetics ; Flow velocity ; Geometry ; nucleic acid analysis ; PCR ; point of care diagnostics ; Polymerase Chain Reaction - methods ; Reagents ; Reproducibility of Results ; Temperature ; Thermal cycling</subject><ispartof>Advanced science, 2024-11, Vol.11 (41), p.e2404688-n/a</ispartof><rights>2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH</rights><rights>2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH.</rights><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c4155-22a9900e9ea932cfa95ad1f57ec52eca8ee69a793be4df2c671ba2a03421dd243</cites><orcidid>0000-0001-9361-9950</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3124285449?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3124285449?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,11562,25753,27924,27925,37012,37013,38516,43895,44590,46052,46476,53791,53793,74412,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39269276$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, MinGin</creatorcontrib><creatorcontrib>Ravisankar, Vijay</creatorcontrib><creatorcontrib>Hassan, Yassin A.</creatorcontrib><creatorcontrib>Ugaz, Victor M.</creatorcontrib><title>Biochemically Programmable Isothermal PCR</title><title>Advanced science</title><addtitle>Adv Sci (Weinh)</addtitle><description>Isothermal PCR can be performed by imposing a static temperature gradient that continuously circulates reagents through denaturing, annealing, and extension conditions inside a PCR tube. But despite early promise, these systems have yet to demonstrate performance and repeatability sufficient for adoption in validated laboratory tests because the rate‐limiting extension step is inherently short and cannot be increased independently of the other stages in a temperature cycle. Here, a discovery that enables isothermal PCR to be achieved with statistically robust repeatability that meets or exceeds diagnostic assay requirements (false positive/negative rate &lt;8% at 95% confidence) by manipulating the interplay between the DNA replication biochemistry (via the amplicon GC content) and the microscale circulatory flow inside a PCR tube is reported. Surprisingly, optimal performance depends on selecting primer sequences that replicate high GC content amplicons, contradicting established PCR primer design rules. This innovative thermocycling approach accelerates PCR to speeds rivaling ultra‐fast instruments, enabling rapid, repeatable isothermal DNA analysis across a range of targets relevant to diagnostics and pathogen detection. Rapid isothermal PCR is achieved with 100% repeatability by manipulating the interplay between the reaction's biochemistry (via the amplicon GC content) and the lava‐lamp‐like microscale flow established inside a PCR tube whose upper and lower surfaces are isothermally maintained at annealing and denaturing temperatures.</description><subject>biochemistry</subject><subject>DNA - genetics</subject><subject>DNA Primers - genetics</subject><subject>Flow velocity</subject><subject>Geometry</subject><subject>nucleic acid analysis</subject><subject>PCR</subject><subject>point of care diagnostics</subject><subject>Polymerase Chain Reaction - methods</subject><subject>Reagents</subject><subject>Reproducibility of Results</subject><subject>Temperature</subject><subject>Thermal cycling</subject><issn>2198-3844</issn><issn>2198-3844</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkU1vEzEQhlcIRKvSK0cUiQscEuyxvfacUAlfkSpR8XW1Jt7ZZCNv3NpJUf49G1KilgsnW57Hj2bmrarnUkykEPCGmtsyAQFa6Nq5R9UpSHRj5bR-fO9-Up2XshJCSKOslu5pdaIQagRbn1av33UpLLnvAsW4G13ltMjU9zSPPJqVtFly7imOrqZfn1VPWoqFz-_Os-rHxw_fp5_Hl18-zaYXl-OgpTFjAEIUgpEJFYSW0FAjW2M5GOBAjrlGsqjmrJsWQm3lnICE0iCbBrQ6q2YHb5No5a9z11Pe-USd__OQ8sJT3nQhsjeDGhFV6wB0qBnRIkndhFpio8EOrrcH1_V23nMTeL3JFB9IH1bW3dIv0q2Xw65cbffdvLoz5HSz5bLxfVcCx0hrTtvilRTagEWDA_ryH3SVtnk97GqgQIMzWu-pyYEKOZWSuT12I4Xfp-r3qfpjqsOHF_dnOOJ_MxwAfQB-dZF3_9H5i_c_v6ERRv0G7_esCg</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Kim, MinGin</creator><creator>Ravisankar, Vijay</creator><creator>Hassan, Yassin A.</creator><creator>Ugaz, Victor M.</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><general>Wiley</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9361-9950</orcidid></search><sort><creationdate>20241101</creationdate><title>Biochemically Programmable Isothermal PCR</title><author>Kim, MinGin ; Ravisankar, Vijay ; Hassan, Yassin A. ; Ugaz, Victor M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4155-22a9900e9ea932cfa95ad1f57ec52eca8ee69a793be4df2c671ba2a03421dd243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>biochemistry</topic><topic>DNA - genetics</topic><topic>DNA Primers - genetics</topic><topic>Flow velocity</topic><topic>Geometry</topic><topic>nucleic acid analysis</topic><topic>PCR</topic><topic>point of care diagnostics</topic><topic>Polymerase Chain Reaction - methods</topic><topic>Reagents</topic><topic>Reproducibility of Results</topic><topic>Temperature</topic><topic>Thermal cycling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, MinGin</creatorcontrib><creatorcontrib>Ravisankar, Vijay</creatorcontrib><creatorcontrib>Hassan, Yassin A.</creatorcontrib><creatorcontrib>Ugaz, Victor M.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Research Library</collection><collection>ProQuest Science Journals</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Advanced science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, MinGin</au><au>Ravisankar, Vijay</au><au>Hassan, Yassin A.</au><au>Ugaz, Victor M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biochemically Programmable Isothermal PCR</atitle><jtitle>Advanced science</jtitle><addtitle>Adv Sci (Weinh)</addtitle><date>2024-11-01</date><risdate>2024</risdate><volume>11</volume><issue>41</issue><spage>e2404688</spage><epage>n/a</epage><pages>e2404688-n/a</pages><issn>2198-3844</issn><eissn>2198-3844</eissn><abstract>Isothermal PCR can be performed by imposing a static temperature gradient that continuously circulates reagents through denaturing, annealing, and extension conditions inside a PCR tube. But despite early promise, these systems have yet to demonstrate performance and repeatability sufficient for adoption in validated laboratory tests because the rate‐limiting extension step is inherently short and cannot be increased independently of the other stages in a temperature cycle. Here, a discovery that enables isothermal PCR to be achieved with statistically robust repeatability that meets or exceeds diagnostic assay requirements (false positive/negative rate &lt;8% at 95% confidence) by manipulating the interplay between the DNA replication biochemistry (via the amplicon GC content) and the microscale circulatory flow inside a PCR tube is reported. Surprisingly, optimal performance depends on selecting primer sequences that replicate high GC content amplicons, contradicting established PCR primer design rules. This innovative thermocycling approach accelerates PCR to speeds rivaling ultra‐fast instruments, enabling rapid, repeatable isothermal DNA analysis across a range of targets relevant to diagnostics and pathogen detection. Rapid isothermal PCR is achieved with 100% repeatability by manipulating the interplay between the reaction's biochemistry (via the amplicon GC content) and the lava‐lamp‐like microscale flow established inside a PCR tube whose upper and lower surfaces are isothermally maintained at annealing and denaturing temperatures.</abstract><cop>Germany</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>39269276</pmid><doi>10.1002/advs.202404688</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-9361-9950</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2198-3844
ispartof Advanced science, 2024-11, Vol.11 (41), p.e2404688-n/a
issn 2198-3844
2198-3844
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_55ad9993f8224c6e9979a14dc619d427
source PubMed Central Free; Wiley Online Library Open Access; Publicly Available Content Database; Coronavirus Research Database
subjects biochemistry
DNA - genetics
DNA Primers - genetics
Flow velocity
Geometry
nucleic acid analysis
PCR
point of care diagnostics
Polymerase Chain Reaction - methods
Reagents
Reproducibility of Results
Temperature
Thermal cycling
title Biochemically Programmable Isothermal PCR
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T11%3A00%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biochemically%20Programmable%20Isothermal%20PCR&rft.jtitle=Advanced%20science&rft.au=Kim,%20MinGin&rft.date=2024-11-01&rft.volume=11&rft.issue=41&rft.spage=e2404688&rft.epage=n/a&rft.pages=e2404688-n/a&rft.issn=2198-3844&rft.eissn=2198-3844&rft_id=info:doi/10.1002/advs.202404688&rft_dat=%3Cproquest_doaj_%3E3104527959%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4155-22a9900e9ea932cfa95ad1f57ec52eca8ee69a793be4df2c671ba2a03421dd243%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3124285449&rft_id=info:pmid/39269276&rfr_iscdi=true