Loading…

Investigating the effect of vaccinated population on the COVID-19 prediction using FA and ABC-based feed-forward neural networks

Since 2019, the coronavirus outbreak has caused many catastrophic events all over the world. At the current time, the massive vaccination has been considered as the most efficient way to fight against the pandemic. This study schemes to explain and model COVID-19 cases by considering the vaccination...

Full description

Saved in:
Bibliographic Details
Published in:Heliyon 2023-02, Vol.9 (2), p.e13672-e13672, Article e13672
Main Authors: Noroozi-Ghaleini, Ebrahim, Shaibani, Mohammad Javad
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Since 2019, the coronavirus outbreak has caused many catastrophic events all over the world. At the current time, the massive vaccination has been considered as the most efficient way to fight against the pandemic. This study schemes to explain and model COVID-19 cases by considering the vaccination rate. We utilized an amalgamation of neural network (NN) with two powerful optimization algorithms, i.e., firefly algorithm and artificial bee colony. For validating the models, we employed the COVID-19 datasets regarding the vaccination rate and the total confirmed cases for 51 states since the beginning of vaccination in the US. The numerical experiment indicated that by considering the vaccinated population, the accuracy of NN increases exponentially when compared with the same NN in the absence of the vaccinated population. During the next stage, the NN with vaccinated input data is elected for firefly and bee optimizing. Based upon the firefly optimizing, 93.75% of COVID-19 cases can be explained in all states. According to the bee optimizing, 92.3% of COVID-19 cases is explained since the massive vaccination. Overall, it can be concluded that the massive vaccination is the key predictor of COVID-19 cases on a grand scale.
ISSN:2405-8440
2405-8440
DOI:10.1016/j.heliyon.2023.e13672