Loading…

Ultrabright gap-enhanced Raman tags for high-speed bioimaging

Surface-enhanced Raman spectroscopy (SERS) is advantageous over fluorescence for bioimaging due to ultra-narrow linewidth of the fingerprint spectrum and weak photo-bleaching effect. However, the existing SERS imaging speed lags far behind practical needs, mainly limited by Raman signals of SERS nan...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2019-08, Vol.10 (1), p.3905-12, Article 3905
Main Authors: Zhang, Yuqing, Gu, Yuqing, He, Jing, Thackray, Benjamin D., Ye, Jian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Surface-enhanced Raman spectroscopy (SERS) is advantageous over fluorescence for bioimaging due to ultra-narrow linewidth of the fingerprint spectrum and weak photo-bleaching effect. However, the existing SERS imaging speed lags far behind practical needs, mainly limited by Raman signals of SERS nanoprobes. In this work, we report ultrabright gap-enhanced Raman tags (GERTs) with strong electromagnetic hot spots from interior sub-nanometer gaps and external petal-like shell structures, larger immobilization surface area, and Raman cross section of reporter molecules. These GERTs reach a Raman enhancement factor beyond 5 × 10 9 and a detection sensitivity down to a single-nanoparticle level. We use a 370 μW laser to realize high-resolution cell imaging within 6 s and high-contrast (a signal-to-background ratio of 80) wide-area (3.2 × 2.8 cm 2 ) sentinel lymph node imaging within 52 s. These nanoprobes offer a potential solution to overcome the current bottleneck in the field of SERS-based bioimaging. The speed of surface-enhanced Raman spectroscopy (SERS) imaging is generally limited due to low Raman signals. Here, the authors develop bright gap-enhanced Raman tags with external hot spots and demonstrate their use in fast near-infrared bioimaging.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-019-11829-y