Loading…
Environmental Impact of the Natural Gas Liquefaction Process: An Example from China
Considering its clean and environmental characteristics, natural gas has gradually attracted attention from countries around the world. China’s coal-to-gas project has significantly increased the country’s demand for, and supply of, natural gas. Liquefied natural gas (LNG) has also been gradually pr...
Saved in:
Published in: | Applied sciences 2020-03, Vol.10 (5), p.1701 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Considering its clean and environmental characteristics, natural gas has gradually attracted attention from countries around the world. China’s coal-to-gas project has significantly increased the country’s demand for, and supply of, natural gas. Liquefied natural gas (LNG) has also been gradually promoted, owing to its advantages of easy storage and transportation. However, the natural gas liquefaction process includes multiple phases, and each phase generates substantial industrial pollutants, such as CO2, SO2, and NOx. Despite this, the resulting environmental impacts have not been quantitatively assessed. Therefore, based on the production process of a liquefaction plant in the Shanxi Province, China, in this study, the Life Cycle Assessment (LCA) model was used to analyze the pollutant discharge in the unit’s natural gas liquefaction production process. By collecting data on the production capacity and composition reports of the eight major LNG-producing provinces, such as Henan, Sichuan, Inner Mongolia, Shaanxi, Xinjiang, Shanxi, Ningxia, and Hebei, the total amount of pollutants discharged from the natural gas liquefaction process in China was estimated. Finally, the environmental impact of the natural gas liquefaction process was evaluated according to the results of the environmental impact of pollutants. Our study arrived at the following conclusions: (i) 93.60% of China’s natural gas liquefaction output is concentrated in eight provinces; (ii) in terms of the unit’s LNG production, the Global Warming Potential (GWP), Acidification Potential (AP), Eutrophication Potential (EP), Photochemical Ozone Creation Potential (POCP) and Dust Potential (DP) proportions of each province explained the gas composition of LNG production gas sources in each province; (iii) the environmental problems caused by natural gas liquefaction were different in each provinces. In addition, we suggested relevant policy recommendations. First, the formulation of LNG-related policies should consider environmental pollution produced during the liquefaction stage. Second, if the problem of pollutant discharge in the liquefaction of natural gas is properly solved, it will not only reduce environmental pollution, but also generate additional income. Third, different provinces should optimize production technology based on the different gas qualities. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app10051701 |