Loading…

AI-driven optimization of ethanol-powered internal combustion engines in alignment with multiple SDGs: A sustainable energy transition

With the escalating requirement for global sustainable energy solutions and the complexities linked with the complete transition to new technologies, internal combustion engines (ICEs) powered with biofuels like ethanol are gaining significance over time. However, problems linked to the performance...

Full description

Saved in:
Bibliographic Details
Published in:Energy conversion and management. X 2023-10, Vol.20, p.100438, Article 100438
Main Authors: Usman, Muhammad, Jamil, Muhammad Kashif, Ashraf, Waqar Muhammad, Saqib, Syed, Ahmad, Touqeer, Fouad, Yasser, Raza, Husnain, Ashfaq, Umar, Pervaiz, Aamir
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:With the escalating requirement for global sustainable energy solutions and the complexities linked with the complete transition to new technologies, internal combustion engines (ICEs) powered with biofuels like ethanol are gaining significance over time. However, problems linked to the performance and emissions of such ICEs necessitate accurate prediction and optimization. The study employed the integration of artificial neural networks (ANN) and multi-level historical design of response surface methodology (RSM) to address these challenges in alignment with the Sustainable Development Goals (SDGs). A single-cylinder spark ignition (SI) engine powered with ethanol-gasoline blends at different loads and speeds was used to gather data. Among six initially trained ANN models, the most efficient model with a regression coefficient (R2) of 0.9952 (training), 0.98579 (validation), 0.98847 (testing), and 0.99307 (overall) was employed to predict outputs such as brake power, brake specific fuel consumption (BSFC), brake thermal energy (BTE), concentration of carbon dioxide (CO2), carbon monoxide (CO), hydrocarbons (HC), and oxides of nitrogen NOx. Predicted outputs were optimized by incorporating RSM. On implementing optimized conditions, it was observed that BP and BTE increased by 19.9%, and 29.8%, respectively. Additionally, CO, and HC emissions experienced substantial reductions of 28.1%, and 40.6%, respectively. This research can help engine producers and researchers make refined decisions and achieve improved performance and emissions. The study directly supports SDG 7, SDG 9, SDG 12, SDG 13, and SGD 17, which call for achieving affordable, clean energy, sustainable industrialization, responsible consumption, and production, taking action on climate change, and partnership to advance the SDGs as a whole respectively.
ISSN:2590-1745
2590-1745
DOI:10.1016/j.ecmx.2023.100438