Loading…
Nondominated Maneuver Strategy Set With Tactical Requirements for a Fighter Against Missiles in a Dogfight
Dogfight is often a continuous and multi-round process with missile attacks. If the fighter only considers the security when evading the incoming missile, it will easily lose the superiority in subsequent air combat. Therefore, it is necessary to maintain as much tactical superiority as possible whi...
Saved in:
Published in: | IEEE access 2020, Vol.8, p.117298-117312 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Dogfight is often a continuous and multi-round process with missile attacks. If the fighter only considers the security when evading the incoming missile, it will easily lose the superiority in subsequent air combat. Therefore, it is necessary to maintain as much tactical superiority as possible while ensuring a successful evasion. The amalgamative tactical requirements of achieving multiple evasive objectives in a dogfight are taken into account in this paper. A method of generating a nondominated maneuver strategy set for evading missiles with tactical requirements is proposed. The tactical requirements include higher miss distance, less energy consumption, and higher terminal superiority. Then the evasion problem is defined and reformulated into a multi-objective optimization problem, which is solved by a redesigned multi-objective evolutionary algorithm based on decomposition (MOEA/D). Simulations are used to demonstrate the feasibility and effectiveness of the approach. A set of approximate Pareto-optimal solutions satisfying the tactical requirements are obtained. These solutions can not only guide the fighter to avoid being hit but also achieve the goal of relatively reducing energy consumption and improving terminal superiority. |
---|---|
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2020.3004864 |