Loading…

Photonic Topological Insulator Based on Frustrated Total Internal Reflection in Array of Coupled Prism Resonators

Total internal reflection occurs at the interface between two media with different refractive indices during propagation of light rays from a medium with a higher refractive index to a medium with a lower refractive index. If the thickness of the second medium is comparable to a specific light wavel...

Full description

Saved in:
Bibliographic Details
Published in:Symmetry (Basel) 2022-12, Vol.14 (12), p.2673
Main Authors: Fedchenko, Dmitry P., Kim, Petr N., Timofeev, Ivan V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Total internal reflection occurs at the interface between two media with different refractive indices during propagation of light rays from a medium with a higher refractive index to a medium with a lower refractive index. If the thickness of the second medium is comparable to a specific light wavelength, then total internal reflection is violated partially or completely. Based on the frustrated total internal reflection, herein we discuss a two-dimensional photonic topological insulator in an array consisting of triangular, quadrangular, or hexagonal transparent prism resonators with a narrow gap between them. An array of prism resonators allows topologically stable edge solutions (eigenwaves) similar to those studied in ring resonators. Moreover, total internal reflection occurs at different angles of incidence of light. This makes it possible to obtain a set of fundamentally new edge solutions. The light is presumably concentrated at the surface; however, in the new solutions it penetrates relatively deep into the photonic topological insulator and excites several layers of prisms positioned beyond the surface. Remarkably, the direction of light propagation is precisely biased, and therefore new solutions exhibit lower symmetry than the resonator array symmetry.
ISSN:2073-8994
2073-8994
DOI:10.3390/sym14122673