Loading…
Photonic Topological Insulator Based on Frustrated Total Internal Reflection in Array of Coupled Prism Resonators
Total internal reflection occurs at the interface between two media with different refractive indices during propagation of light rays from a medium with a higher refractive index to a medium with a lower refractive index. If the thickness of the second medium is comparable to a specific light wavel...
Saved in:
Published in: | Symmetry (Basel) 2022-12, Vol.14 (12), p.2673 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c403t-269c556bc2ff10a015780d008624c0d25571515a015117c0ad884893b75592a33 |
---|---|
cites | cdi_FETCH-LOGICAL-c403t-269c556bc2ff10a015780d008624c0d25571515a015117c0ad884893b75592a33 |
container_end_page | |
container_issue | 12 |
container_start_page | 2673 |
container_title | Symmetry (Basel) |
container_volume | 14 |
creator | Fedchenko, Dmitry P. Kim, Petr N. Timofeev, Ivan V. |
description | Total internal reflection occurs at the interface between two media with different refractive indices during propagation of light rays from a medium with a higher refractive index to a medium with a lower refractive index. If the thickness of the second medium is comparable to a specific light wavelength, then total internal reflection is violated partially or completely. Based on the frustrated total internal reflection, herein we discuss a two-dimensional photonic topological insulator in an array consisting of triangular, quadrangular, or hexagonal transparent prism resonators with a narrow gap between them. An array of prism resonators allows topologically stable edge solutions (eigenwaves) similar to those studied in ring resonators. Moreover, total internal reflection occurs at different angles of incidence of light. This makes it possible to obtain a set of fundamentally new edge solutions. The light is presumably concentrated at the surface; however, in the new solutions it penetrates relatively deep into the photonic topological insulator and excites several layers of prisms positioned beyond the surface. Remarkably, the direction of light propagation is precisely biased, and therefore new solutions exhibit lower symmetry than the resonator array symmetry. |
doi_str_mv | 10.3390/sym14122673 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_5c42834f25d3445689f3ce30a97693d7</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A752148654</galeid><doaj_id>oai_doaj_org_article_5c42834f25d3445689f3ce30a97693d7</doaj_id><sourcerecordid>A752148654</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-269c556bc2ff10a015780d008624c0d25571515a015117c0ad884893b75592a33</originalsourceid><addsrcrecordid>eNpNkUtvGyEQgFdRKjVKc-ofWCnHyOnwWuDoWHlYspQocs-IsOBgrXccYA_-98FxVQUODMM3n4Bpmt8EbhnT8CcfdoQTSjvJzpoLCpLNlNb8_Fv8s7nKeQt1CBC8g4vm4-UdC47RtWvc44Cb6OzQLsc8DbZgau9s9n2LY_uQplySLXW3xvLFFJ_GGrz6MHhXYoXi2M5TsocWQ7vAaT9U-iXFvKtQxvFozL-aH8EO2V_9Wy-bvw_368XTbPX8uFzMVzPHgZUZ7bQTontzNAQCFoiQCnoA1VHuoKdCSCKIOB4QIh3YXimuNHuTQmhqGbtslidvj3Zr9inubDoYtNF8JTBtjE0lusEb4ThVjAcqesa56JQOzHkGVstOs15W1_XJtU_4MflczBan4-OzobLyRCkClbo9URtbpXEMWD_M1dn7XXQ4-hBrfi4FJVx1gteCm1OBS5hz8uH_NQmYY0_Nt56yT4lGkdg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2756818810</pqid></control><display><type>article</type><title>Photonic Topological Insulator Based on Frustrated Total Internal Reflection in Array of Coupled Prism Resonators</title><source>Publicly Available Content Database</source><creator>Fedchenko, Dmitry P. ; Kim, Petr N. ; Timofeev, Ivan V.</creator><creatorcontrib>Fedchenko, Dmitry P. ; Kim, Petr N. ; Timofeev, Ivan V.</creatorcontrib><description>Total internal reflection occurs at the interface between two media with different refractive indices during propagation of light rays from a medium with a higher refractive index to a medium with a lower refractive index. If the thickness of the second medium is comparable to a specific light wavelength, then total internal reflection is violated partially or completely. Based on the frustrated total internal reflection, herein we discuss a two-dimensional photonic topological insulator in an array consisting of triangular, quadrangular, or hexagonal transparent prism resonators with a narrow gap between them. An array of prism resonators allows topologically stable edge solutions (eigenwaves) similar to those studied in ring resonators. Moreover, total internal reflection occurs at different angles of incidence of light. This makes it possible to obtain a set of fundamentally new edge solutions. The light is presumably concentrated at the surface; however, in the new solutions it penetrates relatively deep into the photonic topological insulator and excites several layers of prisms positioned beyond the surface. Remarkably, the direction of light propagation is precisely biased, and therefore new solutions exhibit lower symmetry than the resonator array symmetry.</description><identifier>ISSN: 2073-8994</identifier><identifier>EISSN: 2073-8994</identifier><identifier>DOI: 10.3390/sym14122673</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Angle of reflection ; Arrays ; Billiards ; Conflicts of interest ; frustrated total internal reflection ; geometric optics ; Geometrical optics ; Incidence angle ; Language ; Light ; Photonics ; Prisms ; Propagation ; Refractivity ; Resonators ; Rings (mathematics) ; Symmetry ; topological insulator ; Topological insulators</subject><ispartof>Symmetry (Basel), 2022-12, Vol.14 (12), p.2673</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-269c556bc2ff10a015780d008624c0d25571515a015117c0ad884893b75592a33</citedby><cites>FETCH-LOGICAL-c403t-269c556bc2ff10a015780d008624c0d25571515a015117c0ad884893b75592a33</cites><orcidid>0000-0003-2684-6226 ; 0009-0009-5307-551X ; 0000-0002-6558-5607</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2756818810/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2756818810?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25732,27903,27904,36991,44569,74872</link.rule.ids></links><search><creatorcontrib>Fedchenko, Dmitry P.</creatorcontrib><creatorcontrib>Kim, Petr N.</creatorcontrib><creatorcontrib>Timofeev, Ivan V.</creatorcontrib><title>Photonic Topological Insulator Based on Frustrated Total Internal Reflection in Array of Coupled Prism Resonators</title><title>Symmetry (Basel)</title><description>Total internal reflection occurs at the interface between two media with different refractive indices during propagation of light rays from a medium with a higher refractive index to a medium with a lower refractive index. If the thickness of the second medium is comparable to a specific light wavelength, then total internal reflection is violated partially or completely. Based on the frustrated total internal reflection, herein we discuss a two-dimensional photonic topological insulator in an array consisting of triangular, quadrangular, or hexagonal transparent prism resonators with a narrow gap between them. An array of prism resonators allows topologically stable edge solutions (eigenwaves) similar to those studied in ring resonators. Moreover, total internal reflection occurs at different angles of incidence of light. This makes it possible to obtain a set of fundamentally new edge solutions. The light is presumably concentrated at the surface; however, in the new solutions it penetrates relatively deep into the photonic topological insulator and excites several layers of prisms positioned beyond the surface. Remarkably, the direction of light propagation is precisely biased, and therefore new solutions exhibit lower symmetry than the resonator array symmetry.</description><subject>Angle of reflection</subject><subject>Arrays</subject><subject>Billiards</subject><subject>Conflicts of interest</subject><subject>frustrated total internal reflection</subject><subject>geometric optics</subject><subject>Geometrical optics</subject><subject>Incidence angle</subject><subject>Language</subject><subject>Light</subject><subject>Photonics</subject><subject>Prisms</subject><subject>Propagation</subject><subject>Refractivity</subject><subject>Resonators</subject><subject>Rings (mathematics)</subject><subject>Symmetry</subject><subject>topological insulator</subject><subject>Topological insulators</subject><issn>2073-8994</issn><issn>2073-8994</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkUtvGyEQgFdRKjVKc-ofWCnHyOnwWuDoWHlYspQocs-IsOBgrXccYA_-98FxVQUODMM3n4Bpmt8EbhnT8CcfdoQTSjvJzpoLCpLNlNb8_Fv8s7nKeQt1CBC8g4vm4-UdC47RtWvc44Cb6OzQLsc8DbZgau9s9n2LY_uQplySLXW3xvLFFJ_GGrz6MHhXYoXi2M5TsocWQ7vAaT9U-iXFvKtQxvFozL-aH8EO2V_9Wy-bvw_368XTbPX8uFzMVzPHgZUZ7bQTontzNAQCFoiQCnoA1VHuoKdCSCKIOB4QIh3YXimuNHuTQmhqGbtslidvj3Zr9inubDoYtNF8JTBtjE0lusEb4ThVjAcqesa56JQOzHkGVstOs15W1_XJtU_4MflczBan4-OzobLyRCkClbo9URtbpXEMWD_M1dn7XXQ4-hBrfi4FJVx1gteCm1OBS5hz8uH_NQmYY0_Nt56yT4lGkdg</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Fedchenko, Dmitry P.</creator><creator>Kim, Petr N.</creator><creator>Timofeev, Ivan V.</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2684-6226</orcidid><orcidid>https://orcid.org/0009-0009-5307-551X</orcidid><orcidid>https://orcid.org/0000-0002-6558-5607</orcidid></search><sort><creationdate>20221201</creationdate><title>Photonic Topological Insulator Based on Frustrated Total Internal Reflection in Array of Coupled Prism Resonators</title><author>Fedchenko, Dmitry P. ; Kim, Petr N. ; Timofeev, Ivan V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-269c556bc2ff10a015780d008624c0d25571515a015117c0ad884893b75592a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Angle of reflection</topic><topic>Arrays</topic><topic>Billiards</topic><topic>Conflicts of interest</topic><topic>frustrated total internal reflection</topic><topic>geometric optics</topic><topic>Geometrical optics</topic><topic>Incidence angle</topic><topic>Language</topic><topic>Light</topic><topic>Photonics</topic><topic>Prisms</topic><topic>Propagation</topic><topic>Refractivity</topic><topic>Resonators</topic><topic>Rings (mathematics)</topic><topic>Symmetry</topic><topic>topological insulator</topic><topic>Topological insulators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fedchenko, Dmitry P.</creatorcontrib><creatorcontrib>Kim, Petr N.</creatorcontrib><creatorcontrib>Timofeev, Ivan V.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DOAJ: Directory of Open Access Journals</collection><jtitle>Symmetry (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fedchenko, Dmitry P.</au><au>Kim, Petr N.</au><au>Timofeev, Ivan V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photonic Topological Insulator Based on Frustrated Total Internal Reflection in Array of Coupled Prism Resonators</atitle><jtitle>Symmetry (Basel)</jtitle><date>2022-12-01</date><risdate>2022</risdate><volume>14</volume><issue>12</issue><spage>2673</spage><pages>2673-</pages><issn>2073-8994</issn><eissn>2073-8994</eissn><abstract>Total internal reflection occurs at the interface between two media with different refractive indices during propagation of light rays from a medium with a higher refractive index to a medium with a lower refractive index. If the thickness of the second medium is comparable to a specific light wavelength, then total internal reflection is violated partially or completely. Based on the frustrated total internal reflection, herein we discuss a two-dimensional photonic topological insulator in an array consisting of triangular, quadrangular, or hexagonal transparent prism resonators with a narrow gap between them. An array of prism resonators allows topologically stable edge solutions (eigenwaves) similar to those studied in ring resonators. Moreover, total internal reflection occurs at different angles of incidence of light. This makes it possible to obtain a set of fundamentally new edge solutions. The light is presumably concentrated at the surface; however, in the new solutions it penetrates relatively deep into the photonic topological insulator and excites several layers of prisms positioned beyond the surface. Remarkably, the direction of light propagation is precisely biased, and therefore new solutions exhibit lower symmetry than the resonator array symmetry.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/sym14122673</doi><orcidid>https://orcid.org/0000-0003-2684-6226</orcidid><orcidid>https://orcid.org/0009-0009-5307-551X</orcidid><orcidid>https://orcid.org/0000-0002-6558-5607</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-8994 |
ispartof | Symmetry (Basel), 2022-12, Vol.14 (12), p.2673 |
issn | 2073-8994 2073-8994 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_5c42834f25d3445689f3ce30a97693d7 |
source | Publicly Available Content Database |
subjects | Angle of reflection Arrays Billiards Conflicts of interest frustrated total internal reflection geometric optics Geometrical optics Incidence angle Language Light Photonics Prisms Propagation Refractivity Resonators Rings (mathematics) Symmetry topological insulator Topological insulators |
title | Photonic Topological Insulator Based on Frustrated Total Internal Reflection in Array of Coupled Prism Resonators |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T22%3A47%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photonic%20Topological%20Insulator%20Based%20on%20Frustrated%20Total%20Internal%20Reflection%20in%20Array%20of%20Coupled%20Prism%20Resonators&rft.jtitle=Symmetry%20(Basel)&rft.au=Fedchenko,%20Dmitry%20P.&rft.date=2022-12-01&rft.volume=14&rft.issue=12&rft.spage=2673&rft.pages=2673-&rft.issn=2073-8994&rft.eissn=2073-8994&rft_id=info:doi/10.3390/sym14122673&rft_dat=%3Cgale_doaj_%3EA752148654%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c403t-269c556bc2ff10a015780d008624c0d25571515a015117c0ad884893b75592a33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2756818810&rft_id=info:pmid/&rft_galeid=A752148654&rfr_iscdi=true |