Loading…

Photonic Topological Insulator Based on Frustrated Total Internal Reflection in Array of Coupled Prism Resonators

Total internal reflection occurs at the interface between two media with different refractive indices during propagation of light rays from a medium with a higher refractive index to a medium with a lower refractive index. If the thickness of the second medium is comparable to a specific light wavel...

Full description

Saved in:
Bibliographic Details
Published in:Symmetry (Basel) 2022-12, Vol.14 (12), p.2673
Main Authors: Fedchenko, Dmitry P., Kim, Petr N., Timofeev, Ivan V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c403t-269c556bc2ff10a015780d008624c0d25571515a015117c0ad884893b75592a33
cites cdi_FETCH-LOGICAL-c403t-269c556bc2ff10a015780d008624c0d25571515a015117c0ad884893b75592a33
container_end_page
container_issue 12
container_start_page 2673
container_title Symmetry (Basel)
container_volume 14
creator Fedchenko, Dmitry P.
Kim, Petr N.
Timofeev, Ivan V.
description Total internal reflection occurs at the interface between two media with different refractive indices during propagation of light rays from a medium with a higher refractive index to a medium with a lower refractive index. If the thickness of the second medium is comparable to a specific light wavelength, then total internal reflection is violated partially or completely. Based on the frustrated total internal reflection, herein we discuss a two-dimensional photonic topological insulator in an array consisting of triangular, quadrangular, or hexagonal transparent prism resonators with a narrow gap between them. An array of prism resonators allows topologically stable edge solutions (eigenwaves) similar to those studied in ring resonators. Moreover, total internal reflection occurs at different angles of incidence of light. This makes it possible to obtain a set of fundamentally new edge solutions. The light is presumably concentrated at the surface; however, in the new solutions it penetrates relatively deep into the photonic topological insulator and excites several layers of prisms positioned beyond the surface. Remarkably, the direction of light propagation is precisely biased, and therefore new solutions exhibit lower symmetry than the resonator array symmetry.
doi_str_mv 10.3390/sym14122673
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_5c42834f25d3445689f3ce30a97693d7</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A752148654</galeid><doaj_id>oai_doaj_org_article_5c42834f25d3445689f3ce30a97693d7</doaj_id><sourcerecordid>A752148654</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-269c556bc2ff10a015780d008624c0d25571515a015117c0ad884893b75592a33</originalsourceid><addsrcrecordid>eNpNkUtvGyEQgFdRKjVKc-ofWCnHyOnwWuDoWHlYspQocs-IsOBgrXccYA_-98FxVQUODMM3n4Bpmt8EbhnT8CcfdoQTSjvJzpoLCpLNlNb8_Fv8s7nKeQt1CBC8g4vm4-UdC47RtWvc44Cb6OzQLsc8DbZgau9s9n2LY_uQplySLXW3xvLFFJ_GGrz6MHhXYoXi2M5TsocWQ7vAaT9U-iXFvKtQxvFozL-aH8EO2V_9Wy-bvw_368XTbPX8uFzMVzPHgZUZ7bQTontzNAQCFoiQCnoA1VHuoKdCSCKIOB4QIh3YXimuNHuTQmhqGbtslidvj3Zr9inubDoYtNF8JTBtjE0lusEb4ThVjAcqesa56JQOzHkGVstOs15W1_XJtU_4MflczBan4-OzobLyRCkClbo9URtbpXEMWD_M1dn7XXQ4-hBrfi4FJVx1gteCm1OBS5hz8uH_NQmYY0_Nt56yT4lGkdg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2756818810</pqid></control><display><type>article</type><title>Photonic Topological Insulator Based on Frustrated Total Internal Reflection in Array of Coupled Prism Resonators</title><source>Publicly Available Content Database</source><creator>Fedchenko, Dmitry P. ; Kim, Petr N. ; Timofeev, Ivan V.</creator><creatorcontrib>Fedchenko, Dmitry P. ; Kim, Petr N. ; Timofeev, Ivan V.</creatorcontrib><description>Total internal reflection occurs at the interface between two media with different refractive indices during propagation of light rays from a medium with a higher refractive index to a medium with a lower refractive index. If the thickness of the second medium is comparable to a specific light wavelength, then total internal reflection is violated partially or completely. Based on the frustrated total internal reflection, herein we discuss a two-dimensional photonic topological insulator in an array consisting of triangular, quadrangular, or hexagonal transparent prism resonators with a narrow gap between them. An array of prism resonators allows topologically stable edge solutions (eigenwaves) similar to those studied in ring resonators. Moreover, total internal reflection occurs at different angles of incidence of light. This makes it possible to obtain a set of fundamentally new edge solutions. The light is presumably concentrated at the surface; however, in the new solutions it penetrates relatively deep into the photonic topological insulator and excites several layers of prisms positioned beyond the surface. Remarkably, the direction of light propagation is precisely biased, and therefore new solutions exhibit lower symmetry than the resonator array symmetry.</description><identifier>ISSN: 2073-8994</identifier><identifier>EISSN: 2073-8994</identifier><identifier>DOI: 10.3390/sym14122673</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Angle of reflection ; Arrays ; Billiards ; Conflicts of interest ; frustrated total internal reflection ; geometric optics ; Geometrical optics ; Incidence angle ; Language ; Light ; Photonics ; Prisms ; Propagation ; Refractivity ; Resonators ; Rings (mathematics) ; Symmetry ; topological insulator ; Topological insulators</subject><ispartof>Symmetry (Basel), 2022-12, Vol.14 (12), p.2673</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-269c556bc2ff10a015780d008624c0d25571515a015117c0ad884893b75592a33</citedby><cites>FETCH-LOGICAL-c403t-269c556bc2ff10a015780d008624c0d25571515a015117c0ad884893b75592a33</cites><orcidid>0000-0003-2684-6226 ; 0009-0009-5307-551X ; 0000-0002-6558-5607</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2756818810/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2756818810?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25732,27903,27904,36991,44569,74872</link.rule.ids></links><search><creatorcontrib>Fedchenko, Dmitry P.</creatorcontrib><creatorcontrib>Kim, Petr N.</creatorcontrib><creatorcontrib>Timofeev, Ivan V.</creatorcontrib><title>Photonic Topological Insulator Based on Frustrated Total Internal Reflection in Array of Coupled Prism Resonators</title><title>Symmetry (Basel)</title><description>Total internal reflection occurs at the interface between two media with different refractive indices during propagation of light rays from a medium with a higher refractive index to a medium with a lower refractive index. If the thickness of the second medium is comparable to a specific light wavelength, then total internal reflection is violated partially or completely. Based on the frustrated total internal reflection, herein we discuss a two-dimensional photonic topological insulator in an array consisting of triangular, quadrangular, or hexagonal transparent prism resonators with a narrow gap between them. An array of prism resonators allows topologically stable edge solutions (eigenwaves) similar to those studied in ring resonators. Moreover, total internal reflection occurs at different angles of incidence of light. This makes it possible to obtain a set of fundamentally new edge solutions. The light is presumably concentrated at the surface; however, in the new solutions it penetrates relatively deep into the photonic topological insulator and excites several layers of prisms positioned beyond the surface. Remarkably, the direction of light propagation is precisely biased, and therefore new solutions exhibit lower symmetry than the resonator array symmetry.</description><subject>Angle of reflection</subject><subject>Arrays</subject><subject>Billiards</subject><subject>Conflicts of interest</subject><subject>frustrated total internal reflection</subject><subject>geometric optics</subject><subject>Geometrical optics</subject><subject>Incidence angle</subject><subject>Language</subject><subject>Light</subject><subject>Photonics</subject><subject>Prisms</subject><subject>Propagation</subject><subject>Refractivity</subject><subject>Resonators</subject><subject>Rings (mathematics)</subject><subject>Symmetry</subject><subject>topological insulator</subject><subject>Topological insulators</subject><issn>2073-8994</issn><issn>2073-8994</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkUtvGyEQgFdRKjVKc-ofWCnHyOnwWuDoWHlYspQocs-IsOBgrXccYA_-98FxVQUODMM3n4Bpmt8EbhnT8CcfdoQTSjvJzpoLCpLNlNb8_Fv8s7nKeQt1CBC8g4vm4-UdC47RtWvc44Cb6OzQLsc8DbZgau9s9n2LY_uQplySLXW3xvLFFJ_GGrz6MHhXYoXi2M5TsocWQ7vAaT9U-iXFvKtQxvFozL-aH8EO2V_9Wy-bvw_368XTbPX8uFzMVzPHgZUZ7bQTontzNAQCFoiQCnoA1VHuoKdCSCKIOB4QIh3YXimuNHuTQmhqGbtslidvj3Zr9inubDoYtNF8JTBtjE0lusEb4ThVjAcqesa56JQOzHkGVstOs15W1_XJtU_4MflczBan4-OzobLyRCkClbo9URtbpXEMWD_M1dn7XXQ4-hBrfi4FJVx1gteCm1OBS5hz8uH_NQmYY0_Nt56yT4lGkdg</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Fedchenko, Dmitry P.</creator><creator>Kim, Petr N.</creator><creator>Timofeev, Ivan V.</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2684-6226</orcidid><orcidid>https://orcid.org/0009-0009-5307-551X</orcidid><orcidid>https://orcid.org/0000-0002-6558-5607</orcidid></search><sort><creationdate>20221201</creationdate><title>Photonic Topological Insulator Based on Frustrated Total Internal Reflection in Array of Coupled Prism Resonators</title><author>Fedchenko, Dmitry P. ; Kim, Petr N. ; Timofeev, Ivan V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-269c556bc2ff10a015780d008624c0d25571515a015117c0ad884893b75592a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Angle of reflection</topic><topic>Arrays</topic><topic>Billiards</topic><topic>Conflicts of interest</topic><topic>frustrated total internal reflection</topic><topic>geometric optics</topic><topic>Geometrical optics</topic><topic>Incidence angle</topic><topic>Language</topic><topic>Light</topic><topic>Photonics</topic><topic>Prisms</topic><topic>Propagation</topic><topic>Refractivity</topic><topic>Resonators</topic><topic>Rings (mathematics)</topic><topic>Symmetry</topic><topic>topological insulator</topic><topic>Topological insulators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fedchenko, Dmitry P.</creatorcontrib><creatorcontrib>Kim, Petr N.</creatorcontrib><creatorcontrib>Timofeev, Ivan V.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DOAJ: Directory of Open Access Journals</collection><jtitle>Symmetry (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fedchenko, Dmitry P.</au><au>Kim, Petr N.</au><au>Timofeev, Ivan V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photonic Topological Insulator Based on Frustrated Total Internal Reflection in Array of Coupled Prism Resonators</atitle><jtitle>Symmetry (Basel)</jtitle><date>2022-12-01</date><risdate>2022</risdate><volume>14</volume><issue>12</issue><spage>2673</spage><pages>2673-</pages><issn>2073-8994</issn><eissn>2073-8994</eissn><abstract>Total internal reflection occurs at the interface between two media with different refractive indices during propagation of light rays from a medium with a higher refractive index to a medium with a lower refractive index. If the thickness of the second medium is comparable to a specific light wavelength, then total internal reflection is violated partially or completely. Based on the frustrated total internal reflection, herein we discuss a two-dimensional photonic topological insulator in an array consisting of triangular, quadrangular, or hexagonal transparent prism resonators with a narrow gap between them. An array of prism resonators allows topologically stable edge solutions (eigenwaves) similar to those studied in ring resonators. Moreover, total internal reflection occurs at different angles of incidence of light. This makes it possible to obtain a set of fundamentally new edge solutions. The light is presumably concentrated at the surface; however, in the new solutions it penetrates relatively deep into the photonic topological insulator and excites several layers of prisms positioned beyond the surface. Remarkably, the direction of light propagation is precisely biased, and therefore new solutions exhibit lower symmetry than the resonator array symmetry.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/sym14122673</doi><orcidid>https://orcid.org/0000-0003-2684-6226</orcidid><orcidid>https://orcid.org/0009-0009-5307-551X</orcidid><orcidid>https://orcid.org/0000-0002-6558-5607</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-8994
ispartof Symmetry (Basel), 2022-12, Vol.14 (12), p.2673
issn 2073-8994
2073-8994
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_5c42834f25d3445689f3ce30a97693d7
source Publicly Available Content Database
subjects Angle of reflection
Arrays
Billiards
Conflicts of interest
frustrated total internal reflection
geometric optics
Geometrical optics
Incidence angle
Language
Light
Photonics
Prisms
Propagation
Refractivity
Resonators
Rings (mathematics)
Symmetry
topological insulator
Topological insulators
title Photonic Topological Insulator Based on Frustrated Total Internal Reflection in Array of Coupled Prism Resonators
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T22%3A47%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photonic%20Topological%20Insulator%20Based%20on%20Frustrated%20Total%20Internal%20Reflection%20in%20Array%20of%20Coupled%20Prism%20Resonators&rft.jtitle=Symmetry%20(Basel)&rft.au=Fedchenko,%20Dmitry%20P.&rft.date=2022-12-01&rft.volume=14&rft.issue=12&rft.spage=2673&rft.pages=2673-&rft.issn=2073-8994&rft.eissn=2073-8994&rft_id=info:doi/10.3390/sym14122673&rft_dat=%3Cgale_doaj_%3EA752148654%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c403t-269c556bc2ff10a015780d008624c0d25571515a015117c0ad884893b75592a33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2756818810&rft_id=info:pmid/&rft_galeid=A752148654&rfr_iscdi=true