Loading…
From Spent Black and Green Tea to Potential Health Boosters: Optimization of Polyphenol Extraction and Assessment of Their Antioxidant and Antibacterial Activities
Tea, one of the most popular beverages worldwide, generates a substantial amount of spent leaves, often directly discarded although they may still contain valuable compounds. This study aims to optimize the extraction of polyphenols from spent black tea (SBT) and spent green tea (SGT) leaves while a...
Saved in:
Published in: | Antioxidants 2024-12, Vol.13 (12), p.1588 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Tea, one of the most popular beverages worldwide, generates a substantial amount of spent leaves, often directly discarded although they may still contain valuable compounds. This study aims to optimize the extraction of polyphenols from spent black tea (SBT) and spent green tea (SGT) leaves while also exploring their antioxidant and antibacterial properties. Response surface methodology was utilized to determine the optimal experimental conditions for extracting polyphenols from SBT and SGT. The total phenolic content (TPC) was quantified using the Folin-Ciocalteu method, while antioxidant activity was evaluated through the DPPH assay. Antibacterial activity was assessed using the disk diffusion method. Additionally, high-performance liquid chromatography (HPLC) was employed to analyze the phytochemical profiles of the SBT and SGT extracts. Optimal extraction for SBT achieved 404 mg GAE/g DM TPC and 51.5% DPPH inhibition at 93.64 °C, 79.9 min, and 59.4% ethanol-water. For SGT, conditions of 93.63 °C, 81.7 min, and 53.2% ethanol-water yielded 452 mg GAE/g DM TPC and 78.3% DPPH inhibition. Both tea extracts exhibited antibacterial activity against Gram-positive bacteria, with SGT showing greater efficacy against
and slightly better inhibition of
compared to SBT. No activity was observed against the Gram-negative bacteria
and
. HPLC analysis revealed hydroxybenzoic acid as the main phenolic compound in SBT (360.7 mg/L), while rutin was predominant in SGT (42.73 mg/L). The optimized phenolic-rich extracts of SBT and SGT demonstrated promising antioxidant and antibacterial potential, making them strong candidates for use as natural health boosters in food products. |
---|---|
ISSN: | 2076-3921 2076-3921 |
DOI: | 10.3390/antiox13121588 |