Loading…

Integrating Bulk and Single-Cell RNA Sequencing Reveals Heterogeneity, Tumor Microenvironment, and Immunotherapeutic Efficacy Based on Sialylation-Related Genes in Bladder Cancer

BackgroundAs known abnormal sialylation exerts crucial roles in the growth, metastasis, and immune evasion of cancers, but the molecular characteristics and roles in bladder cancer (BLCA) remain unclear. This study intends to establish BLCA risk stratification based on sialylation-related genes and...

Full description

Saved in:
Bibliographic Details
Published in:Journal of inflammation research 2023-01, Vol.16, p.3399-3417
Main Authors: Tan, Zhiyong, Chen, Xiaorong, Zuo, Jieming, Fu, Shi, Wang, Jiansong, Wang, Haifeng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:BackgroundAs known abnormal sialylation exerts crucial roles in the growth, metastasis, and immune evasion of cancers, but the molecular characteristics and roles in bladder cancer (BLCA) remain unclear. This study intends to establish BLCA risk stratification based on sialylation-related genes and elucidate its role in prognosis, tumor microenvironment, and immunotherapy of BLCA. MethodsBulk RNA-seq and scRNA-seq data were downloaded from open-access databases. The scRNA-seq data were processed using the R package "Seurat" to identify the core cell types. The tumor sub-typing of BLCA samples was performed by the R package "ConsensusClusterPlus" in the bulk RNA-seq data. Signature genes were identified by the R package "limma" and univariate regression analysis to calculate risk scores using the R package "GSVA" and establish risk stratification of BLCA patients. Finally, the differences in clinicopathological characteristics, tumor microenvironment, and immunotherapy efficacy between the different groups were investigated. Results5 core cell types were identified in the scRNA-seq dataset, with monocytes and macrophages presenting the greatest percentage, sialylation-related gene expression, and sialylation scores. The bulk RNA-seq samples were classified into 3 tumor subtypes based on 19 prognosis-related sialylation genes. The 10 differential expressed genes (DEGs) with the smallest p-values were collected as signature genes, and the risk score was calculated, with the samples divided into high and low-risk score groups. The results showed that patients in the high-risk score group exhibited worse survival outcomes, higher tumor grade, more advanced stage, more frequency of gene mutations, higher expression levels of immune checkpoints, and lower immunotherapy response. ConclusionWe established a novel risk stratification of BLCA from a glycomics perspective, which demonstrated good accuracy in determining the prognostic outcome, clinicopathological characteristics, immune microenvironment, and immunotherapy efficacy of patients, and we are proposing to apply it to direct the choice of clinical treatment options for patients.
ISSN:1178-7031
1178-7031
DOI:10.2147/JIR.S418433