Loading…
Heat transfer control using a thermal analogue of coherent perfect absorption
Recent investigations on non-Hermitian physics have unlocked new possibilities to manipulate wave scattering on lossy materials. Coherent perfect absorption is such an effect that enables all-light control by incorporating a suitable amount of loss. On the other hand, controlling heat transfer with...
Saved in:
Published in: | Nature communications 2022-05, Vol.13 (1), p.2683-2683, Article 2683 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Recent investigations on non-Hermitian physics have unlocked new possibilities to manipulate wave scattering on lossy materials. Coherent perfect absorption is such an effect that enables all-light control by incorporating a suitable amount of loss. On the other hand, controlling heat transfer with heat may empower a distinct paradigm other than using thermal metamaterials. However, since heat neither propagates nor carries any momentum, almost all concepts in wave scattering are ill-defined for steady-state heat diffusion, making it formidable to understand or utilize any coherent effect. Here, we establish a scattering theory for heat diffusion by introducing an imitated momentum for thermal fields. The thermal analogue of coherent perfect absorption is thus predicted and demonstrated as the perfect absorption of exergy fluxes and undisturbed temperature fields. Unlike its photonic counterpart, thermal coherent perfect absorption can be realized for regular thermal materials, and be generalized for various objects.
A thermal analogue of coherent perfect absorption would allow to control heat transfer using heat, but the lack of momentum propagation in a thermal field seems to prevent any role for coherence. Here, the authors allow this by introducing an imitated momentum for steady-state heat diffusion. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-022-30023-1 |