Loading…
Geodesic completeness of effective null geodesics in regular space-times with non-linear electrodynamics
We study the completeness of light trajectories in certain spherically symmetric regular geometries found in Palatini theories of gravity threaded by non-linear (electromagnetic) fields, which makes their propagation to happen along geodesics of an effective metric. Two types of geodesic restoration...
Saved in:
Published in: | The European physical journal. C, Particles and fields Particles and fields, 2023-09, Vol.83 (9), p.785-8, Article 785 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We study the completeness of light trajectories in certain spherically symmetric regular geometries found in Palatini theories of gravity threaded by non-linear (electromagnetic) fields, which makes their propagation to happen along geodesics of an effective metric. Two types of geodesic restoration mechanisms are employed: by pushing the focal point to infinite affine distance, thus unreachable in finite time by any sets of geodesics, or by the presence of a defocusing surface associated to the development of a wormhole throat. We discuss several examples of such geometries to conclude the completeness of all such effective paths. Our results are of interest both for the finding of singularity-free solutions and for the analysis of their optical appearances e.g. in shadow observations. |
---|---|
ISSN: | 1434-6052 1434-6044 1434-6052 |
DOI: | 10.1140/epjc/s10052-023-11969-y |