Loading…

ON CAUCHY-TYPE BOUNDS FOR THE EIGENVALUES OF A SPECIAL CLASS OF MATRIX POLYNOMIALS

Let \(\mathbb{C}^{m\times m}\) be the set of all \(m\times m\) matrices whose  entries are in \(\mathbb{C},\) the set of complex numbers. Then \(P(z):=\sum\limits_{j=0}^nA_jz^j,\) \(A_j\in \mathbb{C}^{m\times m},\) \(0\leq j\leq n\) is called a matrix polynomial. If \(A_{n}\neq 0\), then \(P(z)\) is...

Full description

Saved in:
Bibliographic Details
Published in:Ural mathematical journal 2023-07, Vol.9 (1), p.113
Main Authors: Monga, Zahid Bashir, Shah, Wali Mohammad
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Let \(\mathbb{C}^{m\times m}\) be the set of all \(m\times m\) matrices whose  entries are in \(\mathbb{C},\) the set of complex numbers. Then \(P(z):=\sum\limits_{j=0}^nA_jz^j,\) \(A_j\in \mathbb{C}^{m\times m},\) \(0\leq j\leq n\) is called a matrix polynomial. If \(A_{n}\neq 0\), then \(P(z)\) is said to be a matrix polynomial of degree \(n\). In this paper we prove some results for the  bound estimates of the eigenvalues of some lacunary type of matrix polynomials.
ISSN:2414-3952
2414-3952
DOI:10.15826/umj.2023.1.009