Loading…
Non-topographic current contrast in scanning field emission microscopy
In scanning field emission microscopy (SFEM), a tip (the source) is approached to few (or a few tens of) nanometres distance from a surface (the collector) and biased to field-emit electrons. In a previous study (Zanin et al. 2016 Proc. R. Soc. A 472 , 20160475. ( doi:10.1098/rspa.2016.0475 )), the...
Saved in:
Published in: | Royal Society open science 2021-07, Vol.8 (7), p.210511-210511 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In scanning field emission microscopy (SFEM), a tip (the source) is approached to few (or a few tens of) nanometres distance from a surface (the collector) and biased to field-emit electrons. In a previous study (Zanin
et al.
2016
Proc. R. Soc. A
472
, 20160475. (
doi:10.1098/rspa.2016.0475
)), the field-emitted current was found to change by approximately 1% at a monatomic surface step (approx. 200 pm thick). Here we prepare surface domains of adjacent different materials that, in some instances, have a topographic contrast smaller than 15 pm. Nevertheless, we observe a contrast in the field-emitted current as high as 10%. This non-topographic collector material dependence is a yet unexplored degree of freedom calling for a new understanding of the quantum mechanical tunnelling barrier at the source site that takes into account the properties of the material at the collector site. |
---|---|
ISSN: | 2054-5703 2054-5703 |
DOI: | 10.1098/rsos.210511 |