Loading…

RNA-mediated demixing transition of low-density condensates

Biomolecular condensates play a key role in organizing cellular reactions by concentrating a specific set of biomolecules. However, whether condensate formation is accompanied by an increase in the total mass concentration within condensates or by the demixing of already highly crowded intracellular...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2023-04, Vol.14 (1), p.2425-2425, Article 2425
Main Authors: Kim, Taehyun, Yoo, Jaeyoon, Do, Sungho, Hwang, Dong Soo, Park, YongKeun, Shin, Yongdae
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Biomolecular condensates play a key role in organizing cellular reactions by concentrating a specific set of biomolecules. However, whether condensate formation is accompanied by an increase in the total mass concentration within condensates or by the demixing of already highly crowded intracellular components remains elusive. Here, using refractive index imaging, we quantify the mass density of several condensates, including nucleoli, heterochromatin, nuclear speckles, and stress granules. Surprisingly, the latter two condensates exhibit low densities with a total mass concentration similar to the surrounding cyto- or nucleoplasm. Low-density condensates display higher permeability to cellular protein probes. We find that RNA tunes the biomolecular density of condensates. Moreover, intracellular structures such as mitochondria heavily influence the way phase separation proceeds, impacting the localization, morphology, and growth of condensates. These findings favor a model where segregative phase separation driven by non-associative or repulsive molecular interactions together with RNA-mediated selective association of specific components can give rise to low-density condensates in the crowded cellular environment. The cell interior is organized by diverse membrane-less condensates. Here, the authors reveal that the densities of certain condensates are surprisingly low, similar to the surrounding protoplasm and driven by cellular RNA as well as the crowded milieu.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-023-38118-z