Loading…

RNA-mediated demixing transition of low-density condensates

Biomolecular condensates play a key role in organizing cellular reactions by concentrating a specific set of biomolecules. However, whether condensate formation is accompanied by an increase in the total mass concentration within condensates or by the demixing of already highly crowded intracellular...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2023-04, Vol.14 (1), p.2425-2425, Article 2425
Main Authors: Kim, Taehyun, Yoo, Jaeyoon, Do, Sungho, Hwang, Dong Soo, Park, YongKeun, Shin, Yongdae
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c541t-7f6233772c233fad06916398c3d2303d72b8ab2b3c6c2de8160c4788526c36ad3
cites cdi_FETCH-LOGICAL-c541t-7f6233772c233fad06916398c3d2303d72b8ab2b3c6c2de8160c4788526c36ad3
container_end_page 2425
container_issue 1
container_start_page 2425
container_title Nature communications
container_volume 14
creator Kim, Taehyun
Yoo, Jaeyoon
Do, Sungho
Hwang, Dong Soo
Park, YongKeun
Shin, Yongdae
description Biomolecular condensates play a key role in organizing cellular reactions by concentrating a specific set of biomolecules. However, whether condensate formation is accompanied by an increase in the total mass concentration within condensates or by the demixing of already highly crowded intracellular components remains elusive. Here, using refractive index imaging, we quantify the mass density of several condensates, including nucleoli, heterochromatin, nuclear speckles, and stress granules. Surprisingly, the latter two condensates exhibit low densities with a total mass concentration similar to the surrounding cyto- or nucleoplasm. Low-density condensates display higher permeability to cellular protein probes. We find that RNA tunes the biomolecular density of condensates. Moreover, intracellular structures such as mitochondria heavily influence the way phase separation proceeds, impacting the localization, morphology, and growth of condensates. These findings favor a model where segregative phase separation driven by non-associative or repulsive molecular interactions together with RNA-mediated selective association of specific components can give rise to low-density condensates in the crowded cellular environment. The cell interior is organized by diverse membrane-less condensates. Here, the authors reveal that the densities of certain condensates are surprisingly low, similar to the surrounding protoplasm and driven by cellular RNA as well as the crowded milieu.
doi_str_mv 10.1038/s41467-023-38118-z
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_5fabe2010fc947f09f91481af9cb16ca</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_5fabe2010fc947f09f91481af9cb16ca</doaj_id><sourcerecordid>2806700792</sourcerecordid><originalsourceid>FETCH-LOGICAL-c541t-7f6233772c233fad06916398c3d2303d72b8ab2b3c6c2de8160c4788526c36ad3</originalsourceid><addsrcrecordid>eNp9kU1rVTEQhoMottT-ARdywI2baCbJzQcupBQ_CkVBdB1y8nHN5dykJueq7a83t6fW1oUhkGHmmTeZvAg9BfISCFOvGgcuJCaUYaYAFL56gA4p4YBBUvbwTnyAjlvbkL6YBsX5Y3TAJJCVFvIQvf788QRvg092Dn7wYZt-pbwe5mpzS3MqeShxmMpP7MM-cTm4kvdhx9sT9CjaqYXjm_MIfX339svpB3z-6f3Z6ck5disOM5ZRUMakpK4f0XoiNAimlWOeMsK8pKOyIx2ZE476oEAQx6VSKyocE9azI3S26PpiN-aipq2tl6bYZK4Tpa6NrXNyUzCraMdACZDoNJeR6KiBK7BRuxGEs13rzaJ1sRv72C7kPup0T_R-JadvZl1-GCDA-2Zd4cWNQi3fd6HNZpuaC9Nkcyi7ZqgiUgMwJTr6_B90U3Y197_aU0KSTtJO0YVytbRWQ7x9DRCz99osXpvutbn22lz1pmd357ht-eNsB9gCtF7K61D_3v0f2d_AYLPY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2806700792</pqid></control><display><type>article</type><title>RNA-mediated demixing transition of low-density condensates</title><source>Open Access: PubMed Central</source><source>Nature</source><source>Publicly Available Content (ProQuest)</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Kim, Taehyun ; Yoo, Jaeyoon ; Do, Sungho ; Hwang, Dong Soo ; Park, YongKeun ; Shin, Yongdae</creator><creatorcontrib>Kim, Taehyun ; Yoo, Jaeyoon ; Do, Sungho ; Hwang, Dong Soo ; Park, YongKeun ; Shin, Yongdae</creatorcontrib><description>Biomolecular condensates play a key role in organizing cellular reactions by concentrating a specific set of biomolecules. However, whether condensate formation is accompanied by an increase in the total mass concentration within condensates or by the demixing of already highly crowded intracellular components remains elusive. Here, using refractive index imaging, we quantify the mass density of several condensates, including nucleoli, heterochromatin, nuclear speckles, and stress granules. Surprisingly, the latter two condensates exhibit low densities with a total mass concentration similar to the surrounding cyto- or nucleoplasm. Low-density condensates display higher permeability to cellular protein probes. We find that RNA tunes the biomolecular density of condensates. Moreover, intracellular structures such as mitochondria heavily influence the way phase separation proceeds, impacting the localization, morphology, and growth of condensates. These findings favor a model where segregative phase separation driven by non-associative or repulsive molecular interactions together with RNA-mediated selective association of specific components can give rise to low-density condensates in the crowded cellular environment. The cell interior is organized by diverse membrane-less condensates. Here, the authors reveal that the densities of certain condensates are surprisingly low, similar to the surrounding protoplasm and driven by cellular RNA as well as the crowded milieu.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-023-38118-z</identifier><identifier>PMID: 37105967</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/109 ; 13/51 ; 132/124 ; 14/1 ; 14/19 ; 14/32 ; 14/35 ; 14/63 ; 42 ; 631/57/2268 ; 631/57/2269 ; 631/80/386/2382 ; 631/80/386/2383 ; Biomolecules ; Cell Nucleolus - metabolism ; Cell Nucleus - metabolism ; Condensates ; Connectivity ; Demixing ; Density ; DNA probes ; Heterochromatin ; Heterochromatin - metabolism ; Humanities and Social Sciences ; Intracellular ; Localization ; Mitochondria ; Molecular interactions ; Morphology ; multidisciplinary ; Nucleoli ; Permeability ; Phase separation ; Proteins ; Protoplasm ; Refractivity ; Ribonucleic acid ; RNA ; RNA - metabolism ; RNA probes ; Science ; Science (multidisciplinary)</subject><ispartof>Nature communications, 2023-04, Vol.14 (1), p.2425-2425, Article 2425</ispartof><rights>The Author(s) 2023</rights><rights>2023. The Author(s).</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c541t-7f6233772c233fad06916398c3d2303d72b8ab2b3c6c2de8160c4788526c36ad3</citedby><cites>FETCH-LOGICAL-c541t-7f6233772c233fad06916398c3d2303d72b8ab2b3c6c2de8160c4788526c36ad3</cites><orcidid>0000-0002-2487-2255 ; 0000-0003-0528-6661 ; 0000-0001-8030-3404 ; 0000-0003-3441-1986</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2806700792/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2806700792?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74897</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37105967$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Taehyun</creatorcontrib><creatorcontrib>Yoo, Jaeyoon</creatorcontrib><creatorcontrib>Do, Sungho</creatorcontrib><creatorcontrib>Hwang, Dong Soo</creatorcontrib><creatorcontrib>Park, YongKeun</creatorcontrib><creatorcontrib>Shin, Yongdae</creatorcontrib><title>RNA-mediated demixing transition of low-density condensates</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Biomolecular condensates play a key role in organizing cellular reactions by concentrating a specific set of biomolecules. However, whether condensate formation is accompanied by an increase in the total mass concentration within condensates or by the demixing of already highly crowded intracellular components remains elusive. Here, using refractive index imaging, we quantify the mass density of several condensates, including nucleoli, heterochromatin, nuclear speckles, and stress granules. Surprisingly, the latter two condensates exhibit low densities with a total mass concentration similar to the surrounding cyto- or nucleoplasm. Low-density condensates display higher permeability to cellular protein probes. We find that RNA tunes the biomolecular density of condensates. Moreover, intracellular structures such as mitochondria heavily influence the way phase separation proceeds, impacting the localization, morphology, and growth of condensates. These findings favor a model where segregative phase separation driven by non-associative or repulsive molecular interactions together with RNA-mediated selective association of specific components can give rise to low-density condensates in the crowded cellular environment. The cell interior is organized by diverse membrane-less condensates. Here, the authors reveal that the densities of certain condensates are surprisingly low, similar to the surrounding protoplasm and driven by cellular RNA as well as the crowded milieu.</description><subject>13/109</subject><subject>13/51</subject><subject>132/124</subject><subject>14/1</subject><subject>14/19</subject><subject>14/32</subject><subject>14/35</subject><subject>14/63</subject><subject>42</subject><subject>631/57/2268</subject><subject>631/57/2269</subject><subject>631/80/386/2382</subject><subject>631/80/386/2383</subject><subject>Biomolecules</subject><subject>Cell Nucleolus - metabolism</subject><subject>Cell Nucleus - metabolism</subject><subject>Condensates</subject><subject>Connectivity</subject><subject>Demixing</subject><subject>Density</subject><subject>DNA probes</subject><subject>Heterochromatin</subject><subject>Heterochromatin - metabolism</subject><subject>Humanities and Social Sciences</subject><subject>Intracellular</subject><subject>Localization</subject><subject>Mitochondria</subject><subject>Molecular interactions</subject><subject>Morphology</subject><subject>multidisciplinary</subject><subject>Nucleoli</subject><subject>Permeability</subject><subject>Phase separation</subject><subject>Proteins</subject><subject>Protoplasm</subject><subject>Refractivity</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA - metabolism</subject><subject>RNA probes</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU1rVTEQhoMottT-ARdywI2baCbJzQcupBQ_CkVBdB1y8nHN5dykJueq7a83t6fW1oUhkGHmmTeZvAg9BfISCFOvGgcuJCaUYaYAFL56gA4p4YBBUvbwTnyAjlvbkL6YBsX5Y3TAJJCVFvIQvf788QRvg092Dn7wYZt-pbwe5mpzS3MqeShxmMpP7MM-cTm4kvdhx9sT9CjaqYXjm_MIfX339svpB3z-6f3Z6ck5disOM5ZRUMakpK4f0XoiNAimlWOeMsK8pKOyIx2ZE476oEAQx6VSKyocE9azI3S26PpiN-aipq2tl6bYZK4Tpa6NrXNyUzCraMdACZDoNJeR6KiBK7BRuxGEs13rzaJ1sRv72C7kPup0T_R-JadvZl1-GCDA-2Zd4cWNQi3fd6HNZpuaC9Nkcyi7ZqgiUgMwJTr6_B90U3Y197_aU0KSTtJO0YVytbRWQ7x9DRCz99osXpvutbn22lz1pmd357ht-eNsB9gCtF7K61D_3v0f2d_AYLPY</recordid><startdate>20230427</startdate><enddate>20230427</enddate><creator>Kim, Taehyun</creator><creator>Yoo, Jaeyoon</creator><creator>Do, Sungho</creator><creator>Hwang, Dong Soo</creator><creator>Park, YongKeun</creator><creator>Shin, Yongdae</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2487-2255</orcidid><orcidid>https://orcid.org/0000-0003-0528-6661</orcidid><orcidid>https://orcid.org/0000-0001-8030-3404</orcidid><orcidid>https://orcid.org/0000-0003-3441-1986</orcidid></search><sort><creationdate>20230427</creationdate><title>RNA-mediated demixing transition of low-density condensates</title><author>Kim, Taehyun ; Yoo, Jaeyoon ; Do, Sungho ; Hwang, Dong Soo ; Park, YongKeun ; Shin, Yongdae</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c541t-7f6233772c233fad06916398c3d2303d72b8ab2b3c6c2de8160c4788526c36ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>13/109</topic><topic>13/51</topic><topic>132/124</topic><topic>14/1</topic><topic>14/19</topic><topic>14/32</topic><topic>14/35</topic><topic>14/63</topic><topic>42</topic><topic>631/57/2268</topic><topic>631/57/2269</topic><topic>631/80/386/2382</topic><topic>631/80/386/2383</topic><topic>Biomolecules</topic><topic>Cell Nucleolus - metabolism</topic><topic>Cell Nucleus - metabolism</topic><topic>Condensates</topic><topic>Connectivity</topic><topic>Demixing</topic><topic>Density</topic><topic>DNA probes</topic><topic>Heterochromatin</topic><topic>Heterochromatin - metabolism</topic><topic>Humanities and Social Sciences</topic><topic>Intracellular</topic><topic>Localization</topic><topic>Mitochondria</topic><topic>Molecular interactions</topic><topic>Morphology</topic><topic>multidisciplinary</topic><topic>Nucleoli</topic><topic>Permeability</topic><topic>Phase separation</topic><topic>Proteins</topic><topic>Protoplasm</topic><topic>Refractivity</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA - metabolism</topic><topic>RNA probes</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Taehyun</creatorcontrib><creatorcontrib>Yoo, Jaeyoon</creatorcontrib><creatorcontrib>Do, Sungho</creatorcontrib><creatorcontrib>Hwang, Dong Soo</creatorcontrib><creatorcontrib>Park, YongKeun</creatorcontrib><creatorcontrib>Shin, Yongdae</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Taehyun</au><au>Yoo, Jaeyoon</au><au>Do, Sungho</au><au>Hwang, Dong Soo</au><au>Park, YongKeun</au><au>Shin, Yongdae</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RNA-mediated demixing transition of low-density condensates</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2023-04-27</date><risdate>2023</risdate><volume>14</volume><issue>1</issue><spage>2425</spage><epage>2425</epage><pages>2425-2425</pages><artnum>2425</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Biomolecular condensates play a key role in organizing cellular reactions by concentrating a specific set of biomolecules. However, whether condensate formation is accompanied by an increase in the total mass concentration within condensates or by the demixing of already highly crowded intracellular components remains elusive. Here, using refractive index imaging, we quantify the mass density of several condensates, including nucleoli, heterochromatin, nuclear speckles, and stress granules. Surprisingly, the latter two condensates exhibit low densities with a total mass concentration similar to the surrounding cyto- or nucleoplasm. Low-density condensates display higher permeability to cellular protein probes. We find that RNA tunes the biomolecular density of condensates. Moreover, intracellular structures such as mitochondria heavily influence the way phase separation proceeds, impacting the localization, morphology, and growth of condensates. These findings favor a model where segregative phase separation driven by non-associative or repulsive molecular interactions together with RNA-mediated selective association of specific components can give rise to low-density condensates in the crowded cellular environment. The cell interior is organized by diverse membrane-less condensates. Here, the authors reveal that the densities of certain condensates are surprisingly low, similar to the surrounding protoplasm and driven by cellular RNA as well as the crowded milieu.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>37105967</pmid><doi>10.1038/s41467-023-38118-z</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-2487-2255</orcidid><orcidid>https://orcid.org/0000-0003-0528-6661</orcidid><orcidid>https://orcid.org/0000-0001-8030-3404</orcidid><orcidid>https://orcid.org/0000-0003-3441-1986</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2023-04, Vol.14 (1), p.2425-2425, Article 2425
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_5fabe2010fc947f09f91481af9cb16ca
source Open Access: PubMed Central; Nature; Publicly Available Content (ProQuest); Springer Nature - nature.com Journals - Fully Open Access
subjects 13/109
13/51
132/124
14/1
14/19
14/32
14/35
14/63
42
631/57/2268
631/57/2269
631/80/386/2382
631/80/386/2383
Biomolecules
Cell Nucleolus - metabolism
Cell Nucleus - metabolism
Condensates
Connectivity
Demixing
Density
DNA probes
Heterochromatin
Heterochromatin - metabolism
Humanities and Social Sciences
Intracellular
Localization
Mitochondria
Molecular interactions
Morphology
multidisciplinary
Nucleoli
Permeability
Phase separation
Proteins
Protoplasm
Refractivity
Ribonucleic acid
RNA
RNA - metabolism
RNA probes
Science
Science (multidisciplinary)
title RNA-mediated demixing transition of low-density condensates
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T16%3A50%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RNA-mediated%20demixing%20transition%20of%20low-density%20condensates&rft.jtitle=Nature%20communications&rft.au=Kim,%20Taehyun&rft.date=2023-04-27&rft.volume=14&rft.issue=1&rft.spage=2425&rft.epage=2425&rft.pages=2425-2425&rft.artnum=2425&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-023-38118-z&rft_dat=%3Cproquest_doaj_%3E2806700792%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c541t-7f6233772c233fad06916398c3d2303d72b8ab2b3c6c2de8160c4788526c36ad3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2806700792&rft_id=info:pmid/37105967&rfr_iscdi=true