Loading…
RNA-mediated demixing transition of low-density condensates
Biomolecular condensates play a key role in organizing cellular reactions by concentrating a specific set of biomolecules. However, whether condensate formation is accompanied by an increase in the total mass concentration within condensates or by the demixing of already highly crowded intracellular...
Saved in:
Published in: | Nature communications 2023-04, Vol.14 (1), p.2425-2425, Article 2425 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c541t-7f6233772c233fad06916398c3d2303d72b8ab2b3c6c2de8160c4788526c36ad3 |
---|---|
cites | cdi_FETCH-LOGICAL-c541t-7f6233772c233fad06916398c3d2303d72b8ab2b3c6c2de8160c4788526c36ad3 |
container_end_page | 2425 |
container_issue | 1 |
container_start_page | 2425 |
container_title | Nature communications |
container_volume | 14 |
creator | Kim, Taehyun Yoo, Jaeyoon Do, Sungho Hwang, Dong Soo Park, YongKeun Shin, Yongdae |
description | Biomolecular condensates play a key role in organizing cellular reactions by concentrating a specific set of biomolecules. However, whether condensate formation is accompanied by an increase in the total mass concentration within condensates or by the demixing of already highly crowded intracellular components remains elusive. Here, using refractive index imaging, we quantify the mass density of several condensates, including nucleoli, heterochromatin, nuclear speckles, and stress granules. Surprisingly, the latter two condensates exhibit low densities with a total mass concentration similar to the surrounding cyto- or nucleoplasm. Low-density condensates display higher permeability to cellular protein probes. We find that RNA tunes the biomolecular density of condensates. Moreover, intracellular structures such as mitochondria heavily influence the way phase separation proceeds, impacting the localization, morphology, and growth of condensates. These findings favor a model where segregative phase separation driven by non-associative or repulsive molecular interactions together with RNA-mediated selective association of specific components can give rise to low-density condensates in the crowded cellular environment.
The cell interior is organized by diverse membrane-less condensates. Here, the authors reveal that the densities of certain condensates are surprisingly low, similar to the surrounding protoplasm and driven by cellular RNA as well as the crowded milieu. |
doi_str_mv | 10.1038/s41467-023-38118-z |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_5fabe2010fc947f09f91481af9cb16ca</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_5fabe2010fc947f09f91481af9cb16ca</doaj_id><sourcerecordid>2806700792</sourcerecordid><originalsourceid>FETCH-LOGICAL-c541t-7f6233772c233fad06916398c3d2303d72b8ab2b3c6c2de8160c4788526c36ad3</originalsourceid><addsrcrecordid>eNp9kU1rVTEQhoMottT-ARdywI2baCbJzQcupBQ_CkVBdB1y8nHN5dykJueq7a83t6fW1oUhkGHmmTeZvAg9BfISCFOvGgcuJCaUYaYAFL56gA4p4YBBUvbwTnyAjlvbkL6YBsX5Y3TAJJCVFvIQvf788QRvg092Dn7wYZt-pbwe5mpzS3MqeShxmMpP7MM-cTm4kvdhx9sT9CjaqYXjm_MIfX339svpB3z-6f3Z6ck5disOM5ZRUMakpK4f0XoiNAimlWOeMsK8pKOyIx2ZE476oEAQx6VSKyocE9azI3S26PpiN-aipq2tl6bYZK4Tpa6NrXNyUzCraMdACZDoNJeR6KiBK7BRuxGEs13rzaJ1sRv72C7kPup0T_R-JadvZl1-GCDA-2Zd4cWNQi3fd6HNZpuaC9Nkcyi7ZqgiUgMwJTr6_B90U3Y197_aU0KSTtJO0YVytbRWQ7x9DRCz99osXpvutbn22lz1pmd357ht-eNsB9gCtF7K61D_3v0f2d_AYLPY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2806700792</pqid></control><display><type>article</type><title>RNA-mediated demixing transition of low-density condensates</title><source>Open Access: PubMed Central</source><source>Nature</source><source>Publicly Available Content (ProQuest)</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Kim, Taehyun ; Yoo, Jaeyoon ; Do, Sungho ; Hwang, Dong Soo ; Park, YongKeun ; Shin, Yongdae</creator><creatorcontrib>Kim, Taehyun ; Yoo, Jaeyoon ; Do, Sungho ; Hwang, Dong Soo ; Park, YongKeun ; Shin, Yongdae</creatorcontrib><description>Biomolecular condensates play a key role in organizing cellular reactions by concentrating a specific set of biomolecules. However, whether condensate formation is accompanied by an increase in the total mass concentration within condensates or by the demixing of already highly crowded intracellular components remains elusive. Here, using refractive index imaging, we quantify the mass density of several condensates, including nucleoli, heterochromatin, nuclear speckles, and stress granules. Surprisingly, the latter two condensates exhibit low densities with a total mass concentration similar to the surrounding cyto- or nucleoplasm. Low-density condensates display higher permeability to cellular protein probes. We find that RNA tunes the biomolecular density of condensates. Moreover, intracellular structures such as mitochondria heavily influence the way phase separation proceeds, impacting the localization, morphology, and growth of condensates. These findings favor a model where segregative phase separation driven by non-associative or repulsive molecular interactions together with RNA-mediated selective association of specific components can give rise to low-density condensates in the crowded cellular environment.
The cell interior is organized by diverse membrane-less condensates. Here, the authors reveal that the densities of certain condensates are surprisingly low, similar to the surrounding protoplasm and driven by cellular RNA as well as the crowded milieu.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-023-38118-z</identifier><identifier>PMID: 37105967</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/109 ; 13/51 ; 132/124 ; 14/1 ; 14/19 ; 14/32 ; 14/35 ; 14/63 ; 42 ; 631/57/2268 ; 631/57/2269 ; 631/80/386/2382 ; 631/80/386/2383 ; Biomolecules ; Cell Nucleolus - metabolism ; Cell Nucleus - metabolism ; Condensates ; Connectivity ; Demixing ; Density ; DNA probes ; Heterochromatin ; Heterochromatin - metabolism ; Humanities and Social Sciences ; Intracellular ; Localization ; Mitochondria ; Molecular interactions ; Morphology ; multidisciplinary ; Nucleoli ; Permeability ; Phase separation ; Proteins ; Protoplasm ; Refractivity ; Ribonucleic acid ; RNA ; RNA - metabolism ; RNA probes ; Science ; Science (multidisciplinary)</subject><ispartof>Nature communications, 2023-04, Vol.14 (1), p.2425-2425, Article 2425</ispartof><rights>The Author(s) 2023</rights><rights>2023. The Author(s).</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c541t-7f6233772c233fad06916398c3d2303d72b8ab2b3c6c2de8160c4788526c36ad3</citedby><cites>FETCH-LOGICAL-c541t-7f6233772c233fad06916398c3d2303d72b8ab2b3c6c2de8160c4788526c36ad3</cites><orcidid>0000-0002-2487-2255 ; 0000-0003-0528-6661 ; 0000-0001-8030-3404 ; 0000-0003-3441-1986</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2806700792/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2806700792?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74897</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37105967$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Taehyun</creatorcontrib><creatorcontrib>Yoo, Jaeyoon</creatorcontrib><creatorcontrib>Do, Sungho</creatorcontrib><creatorcontrib>Hwang, Dong Soo</creatorcontrib><creatorcontrib>Park, YongKeun</creatorcontrib><creatorcontrib>Shin, Yongdae</creatorcontrib><title>RNA-mediated demixing transition of low-density condensates</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Biomolecular condensates play a key role in organizing cellular reactions by concentrating a specific set of biomolecules. However, whether condensate formation is accompanied by an increase in the total mass concentration within condensates or by the demixing of already highly crowded intracellular components remains elusive. Here, using refractive index imaging, we quantify the mass density of several condensates, including nucleoli, heterochromatin, nuclear speckles, and stress granules. Surprisingly, the latter two condensates exhibit low densities with a total mass concentration similar to the surrounding cyto- or nucleoplasm. Low-density condensates display higher permeability to cellular protein probes. We find that RNA tunes the biomolecular density of condensates. Moreover, intracellular structures such as mitochondria heavily influence the way phase separation proceeds, impacting the localization, morphology, and growth of condensates. These findings favor a model where segregative phase separation driven by non-associative or repulsive molecular interactions together with RNA-mediated selective association of specific components can give rise to low-density condensates in the crowded cellular environment.
The cell interior is organized by diverse membrane-less condensates. Here, the authors reveal that the densities of certain condensates are surprisingly low, similar to the surrounding protoplasm and driven by cellular RNA as well as the crowded milieu.</description><subject>13/109</subject><subject>13/51</subject><subject>132/124</subject><subject>14/1</subject><subject>14/19</subject><subject>14/32</subject><subject>14/35</subject><subject>14/63</subject><subject>42</subject><subject>631/57/2268</subject><subject>631/57/2269</subject><subject>631/80/386/2382</subject><subject>631/80/386/2383</subject><subject>Biomolecules</subject><subject>Cell Nucleolus - metabolism</subject><subject>Cell Nucleus - metabolism</subject><subject>Condensates</subject><subject>Connectivity</subject><subject>Demixing</subject><subject>Density</subject><subject>DNA probes</subject><subject>Heterochromatin</subject><subject>Heterochromatin - metabolism</subject><subject>Humanities and Social Sciences</subject><subject>Intracellular</subject><subject>Localization</subject><subject>Mitochondria</subject><subject>Molecular interactions</subject><subject>Morphology</subject><subject>multidisciplinary</subject><subject>Nucleoli</subject><subject>Permeability</subject><subject>Phase separation</subject><subject>Proteins</subject><subject>Protoplasm</subject><subject>Refractivity</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA - metabolism</subject><subject>RNA probes</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU1rVTEQhoMottT-ARdywI2baCbJzQcupBQ_CkVBdB1y8nHN5dykJueq7a83t6fW1oUhkGHmmTeZvAg9BfISCFOvGgcuJCaUYaYAFL56gA4p4YBBUvbwTnyAjlvbkL6YBsX5Y3TAJJCVFvIQvf788QRvg092Dn7wYZt-pbwe5mpzS3MqeShxmMpP7MM-cTm4kvdhx9sT9CjaqYXjm_MIfX339svpB3z-6f3Z6ck5disOM5ZRUMakpK4f0XoiNAimlWOeMsK8pKOyIx2ZE476oEAQx6VSKyocE9azI3S26PpiN-aipq2tl6bYZK4Tpa6NrXNyUzCraMdACZDoNJeR6KiBK7BRuxGEs13rzaJ1sRv72C7kPup0T_R-JadvZl1-GCDA-2Zd4cWNQi3fd6HNZpuaC9Nkcyi7ZqgiUgMwJTr6_B90U3Y197_aU0KSTtJO0YVytbRWQ7x9DRCz99osXpvutbn22lz1pmd357ht-eNsB9gCtF7K61D_3v0f2d_AYLPY</recordid><startdate>20230427</startdate><enddate>20230427</enddate><creator>Kim, Taehyun</creator><creator>Yoo, Jaeyoon</creator><creator>Do, Sungho</creator><creator>Hwang, Dong Soo</creator><creator>Park, YongKeun</creator><creator>Shin, Yongdae</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2487-2255</orcidid><orcidid>https://orcid.org/0000-0003-0528-6661</orcidid><orcidid>https://orcid.org/0000-0001-8030-3404</orcidid><orcidid>https://orcid.org/0000-0003-3441-1986</orcidid></search><sort><creationdate>20230427</creationdate><title>RNA-mediated demixing transition of low-density condensates</title><author>Kim, Taehyun ; Yoo, Jaeyoon ; Do, Sungho ; Hwang, Dong Soo ; Park, YongKeun ; Shin, Yongdae</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c541t-7f6233772c233fad06916398c3d2303d72b8ab2b3c6c2de8160c4788526c36ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>13/109</topic><topic>13/51</topic><topic>132/124</topic><topic>14/1</topic><topic>14/19</topic><topic>14/32</topic><topic>14/35</topic><topic>14/63</topic><topic>42</topic><topic>631/57/2268</topic><topic>631/57/2269</topic><topic>631/80/386/2382</topic><topic>631/80/386/2383</topic><topic>Biomolecules</topic><topic>Cell Nucleolus - metabolism</topic><topic>Cell Nucleus - metabolism</topic><topic>Condensates</topic><topic>Connectivity</topic><topic>Demixing</topic><topic>Density</topic><topic>DNA probes</topic><topic>Heterochromatin</topic><topic>Heterochromatin - metabolism</topic><topic>Humanities and Social Sciences</topic><topic>Intracellular</topic><topic>Localization</topic><topic>Mitochondria</topic><topic>Molecular interactions</topic><topic>Morphology</topic><topic>multidisciplinary</topic><topic>Nucleoli</topic><topic>Permeability</topic><topic>Phase separation</topic><topic>Proteins</topic><topic>Protoplasm</topic><topic>Refractivity</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA - metabolism</topic><topic>RNA probes</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Taehyun</creatorcontrib><creatorcontrib>Yoo, Jaeyoon</creatorcontrib><creatorcontrib>Do, Sungho</creatorcontrib><creatorcontrib>Hwang, Dong Soo</creatorcontrib><creatorcontrib>Park, YongKeun</creatorcontrib><creatorcontrib>Shin, Yongdae</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Taehyun</au><au>Yoo, Jaeyoon</au><au>Do, Sungho</au><au>Hwang, Dong Soo</au><au>Park, YongKeun</au><au>Shin, Yongdae</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RNA-mediated demixing transition of low-density condensates</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2023-04-27</date><risdate>2023</risdate><volume>14</volume><issue>1</issue><spage>2425</spage><epage>2425</epage><pages>2425-2425</pages><artnum>2425</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Biomolecular condensates play a key role in organizing cellular reactions by concentrating a specific set of biomolecules. However, whether condensate formation is accompanied by an increase in the total mass concentration within condensates or by the demixing of already highly crowded intracellular components remains elusive. Here, using refractive index imaging, we quantify the mass density of several condensates, including nucleoli, heterochromatin, nuclear speckles, and stress granules. Surprisingly, the latter two condensates exhibit low densities with a total mass concentration similar to the surrounding cyto- or nucleoplasm. Low-density condensates display higher permeability to cellular protein probes. We find that RNA tunes the biomolecular density of condensates. Moreover, intracellular structures such as mitochondria heavily influence the way phase separation proceeds, impacting the localization, morphology, and growth of condensates. These findings favor a model where segregative phase separation driven by non-associative or repulsive molecular interactions together with RNA-mediated selective association of specific components can give rise to low-density condensates in the crowded cellular environment.
The cell interior is organized by diverse membrane-less condensates. Here, the authors reveal that the densities of certain condensates are surprisingly low, similar to the surrounding protoplasm and driven by cellular RNA as well as the crowded milieu.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>37105967</pmid><doi>10.1038/s41467-023-38118-z</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-2487-2255</orcidid><orcidid>https://orcid.org/0000-0003-0528-6661</orcidid><orcidid>https://orcid.org/0000-0001-8030-3404</orcidid><orcidid>https://orcid.org/0000-0003-3441-1986</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2023-04, Vol.14 (1), p.2425-2425, Article 2425 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_5fabe2010fc947f09f91481af9cb16ca |
source | Open Access: PubMed Central; Nature; Publicly Available Content (ProQuest); Springer Nature - nature.com Journals - Fully Open Access |
subjects | 13/109 13/51 132/124 14/1 14/19 14/32 14/35 14/63 42 631/57/2268 631/57/2269 631/80/386/2382 631/80/386/2383 Biomolecules Cell Nucleolus - metabolism Cell Nucleus - metabolism Condensates Connectivity Demixing Density DNA probes Heterochromatin Heterochromatin - metabolism Humanities and Social Sciences Intracellular Localization Mitochondria Molecular interactions Morphology multidisciplinary Nucleoli Permeability Phase separation Proteins Protoplasm Refractivity Ribonucleic acid RNA RNA - metabolism RNA probes Science Science (multidisciplinary) |
title | RNA-mediated demixing transition of low-density condensates |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T16%3A50%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RNA-mediated%20demixing%20transition%20of%20low-density%20condensates&rft.jtitle=Nature%20communications&rft.au=Kim,%20Taehyun&rft.date=2023-04-27&rft.volume=14&rft.issue=1&rft.spage=2425&rft.epage=2425&rft.pages=2425-2425&rft.artnum=2425&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-023-38118-z&rft_dat=%3Cproquest_doaj_%3E2806700792%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c541t-7f6233772c233fad06916398c3d2303d72b8ab2b3c6c2de8160c4788526c36ad3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2806700792&rft_id=info:pmid/37105967&rfr_iscdi=true |