Loading…

Data-driven modeling and prediction of non-linearizable dynamics via spectral submanifolds

We develop a methodology to construct low-dimensional predictive models from data sets representing essentially nonlinear (or non-linearizable ) dynamical systems with a hyperbolic linear part that are subject to external forcing with finitely many frequencies. Our data-driven, sparse, nonlinear mod...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2022-02, Vol.13 (1), p.872-13, Article 872
Main Authors: Cenedese, Mattia, Axås, Joar, Bäuerlein, Bastian, Avila, Kerstin, Haller, George
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We develop a methodology to construct low-dimensional predictive models from data sets representing essentially nonlinear (or non-linearizable ) dynamical systems with a hyperbolic linear part that are subject to external forcing with finitely many frequencies. Our data-driven, sparse, nonlinear models are obtained as extended normal forms of the reduced dynamics on low-dimensional, attracting spectral submanifolds (SSMs) of the dynamical system. We illustrate the power of data-driven SSM reduction on high-dimensional numerical data sets and experimental measurements involving beam oscillations, vortex shedding and sloshing in a water tank. We find that SSM reduction trained on unforced data also predicts nonlinear response accurately under additional external forcing. Current data-driven modelling techniques perform reliably on linear systems or on those that can be linearized. Cenedese et al. develop a data-based reduced modeling method for non-linear, high-dimensional physical systems. Their models reconstruct and predict the dynamics of the full physical system.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-022-28518-y