Loading…

New trigonometric B-spline approximation for numerical investigation of the regularized long-wave equation

The objective of this work is to propose a collocation technique based on new cubic trigonometric B-spline (NCTB-spline) functions to approximate the regularized long-wave (RLW) equation. This equation is used for modelling numerous problems occurring in applied sciences. The NCTB-spline collocation...

Full description

Saved in:
Bibliographic Details
Published in:Open Physics 2021-12, Vol.19 (1), p.758-769
Main Authors: Msmali, Ahmed Hussein, Tamsir, Mohammad, Dhiman, Neeraj, Aiyashi, Mohammed A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The objective of this work is to propose a collocation technique based on new cubic trigonometric B-spline (NCTB-spline) functions to approximate the regularized long-wave (RLW) equation. This equation is used for modelling numerous problems occurring in applied sciences. The NCTB-spline collocation method is used to integrate the spatial derivatives. We use the Rubin–Graves linearization technique to linearize the non-linear term. The accuracy and efficiency of the technique are examined by employing it on three important numerical examples which have three invariants of motion . mass, momentum, and energy. It is observed that the error norms of the present method are less than the error norms of the methods available in the literature. The numerical values of these invariants have also been approximated, which remain conserved during the program run which shows that the propagation of the solitary wave is represented perfectly. The propagation of one and two solitary waves and undulations of waves are depicted graphically. The stability analysis shows that the method is unconditionally stable.
ISSN:2391-5471
2391-5471
DOI:10.1515/phys-2021-0087