Loading…
Logic Meets Algebra: the Case of Regular Languages
The study of finite automata and regular languages is a privileged meeting point of algebra and logic. Since the work of Buchi, regular languages have been classified according to their descriptive complexity, i.e. the type of logical formalism required to define them. The algebraic point of view on...
Saved in:
Published in: | Logical methods in computer science 2007-02, Vol.3, Issue 1 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The study of finite automata and regular languages is a privileged meeting
point of algebra and logic. Since the work of Buchi, regular languages have
been classified according to their descriptive complexity, i.e. the type of
logical formalism required to define them. The algebraic point of view on
automata is an essential complement of this classification: by providing
alternative, algebraic characterizations for the classes, it often yields the
only opportunity for the design of algorithms that decide expressibility in
some logical fragment.
We survey the existing results relating the expressibility of regular
languages in logical fragments of MSO[S] with algebraic properties of their
minimal automata. In particular, we show that many of the best known results in
this area share the same underlying mechanics and rely on a very strong
relation between logical substitutions and block-products of pseudovarieties of
monoid. We also explain the impact of these connections on circuit complexity
theory. |
---|---|
ISSN: | 1860-5974 1860-5974 |
DOI: | 10.2168/LMCS-3(1:4)2007 |