Loading…
Convergence theorems for monotone vector field inclusions and minimization problems in Hadamard spaces
This article analyses two schemes: Mann-type and viscosity-type proximal point algorithms. Using these schemes, we establish Δ-convergence and strong convergence theorems for finding a common solution of monotone vector field inclusion problems, a minimization problem, and a common fixed point of mu...
Saved in:
Published in: | Analysis and Geometry in Metric Spaces 2023-04, Vol.11 (1), p.1029-1039 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This article analyses two schemes: Mann-type and viscosity-type proximal point algorithms. Using these schemes, we establish Δ-convergence and strong convergence theorems for finding a common solution of monotone vector field inclusion problems, a minimization problem, and a common fixed point of multivalued demicontractive mappings in Hadamard spaces. We apply our results to find mean and median values of probabilities, minimize energy of measurable mappings, and solve a kinematic problem in robotic motion control. We also include a numerical example to show the applicability of the schemes. Our findings corroborate some recent findings. |
---|---|
ISSN: | 2299-3274 2299-3274 |
DOI: | 10.1515/agms-2022-0150 |