Loading…

3D-printed devices for continuous-flow organic chemistry

We present a study in which the versatility of 3D-printing is combined with the processing advantages of flow chemistry for the synthesis of organic compounds. Robust and inexpensive 3D-printed reactionware devices are easily connected using standard fittings resulting in complex, custom-made flow s...

Full description

Saved in:
Bibliographic Details
Published in:Beilstein journal of organic chemistry 2013-05, Vol.9 (1), p.951-959
Main Authors: Dragone, Vincenza, Sans, Victor, Rosnes, Mali H, Kitson, Philip J, Cronin, Leroy
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We present a study in which the versatility of 3D-printing is combined with the processing advantages of flow chemistry for the synthesis of organic compounds. Robust and inexpensive 3D-printed reactionware devices are easily connected using standard fittings resulting in complex, custom-made flow systems, including multiple reactors in a series with in-line, real-time analysis using an ATR-IR flow cell. As a proof of concept, we utilized two types of organic reactions, imine syntheses and imine reductions, to show how different reactor configurations and substrates give different products.
ISSN:1860-5397
1860-5397
DOI:10.3762/bjoc.9.109