Loading…

Linear Stability Analysis of the Cahn–Hilliard Equation in Spinodal Region

We study a linear stability analysis for the Cahn–Hilliard (CH) equation at critical and off-critical compositions. The CH equation is solved by the linearly stabilized splitting scheme and the Fourier-spectral method. We define the analytic and numerical growth rates and compare these growth rates...

Full description

Saved in:
Bibliographic Details
Published in:Journal of function spaces 2022, Vol.2022, p.1-11
Main Authors: Ham, Seokjun, Jeong, Darae, Kim, Hyundong, Lee, Chaeyoung, Kwak, Soobin, Hwang, Youngjin, Kim, Junseok
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c360t-c267e2625a19b127733fa6f498b600c86ee59484dfc76e36b6cfa683fc8c79c63
container_end_page 11
container_issue
container_start_page 1
container_title Journal of function spaces
container_volume 2022
creator Ham, Seokjun
Jeong, Darae
Kim, Hyundong
Lee, Chaeyoung
Kwak, Soobin
Hwang, Youngjin
Kim, Junseok
description We study a linear stability analysis for the Cahn–Hilliard (CH) equation at critical and off-critical compositions. The CH equation is solved by the linearly stabilized splitting scheme and the Fourier-spectral method. We define the analytic and numerical growth rates and compare these growth rates with respect to the different average levels. In this study, the linear stability analysis is conducted by classifying three average levels such as zero average, spinodal average, and near critical point levels of free energy function, in the one-dimensional (1D) space. The numerical results provide insight for the dynamics of CH equation at critical and off-critical compositions.
doi_str_mv 10.1155/2022/2970876
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_63407d064baf4ae7a2a0a4100ca77aca</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_63407d064baf4ae7a2a0a4100ca77aca</doaj_id><sourcerecordid>2683801858</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-c267e2625a19b127733fa6f498b600c86ee59484dfc76e36b6cfa683fc8c79c63</originalsourceid><addsrcrecordid>eNp9kMFKAzEURQdRsNTu_ICAS61NMpkksyyl2kJBsLoObzKZNmWctMkU6c5_8A_9ElOndOnbvMd9h3vhJsktwY-EZNmIYkpHNBdYCn6R9GhK2FDGuTzfOb9OBiFsMMaE5IRlWS9ZLGxjwKNlC4WtbXtA4wbqQ7ABuQq1a4MmsG5-vr5ntq4t-BJNd3torWuQbdByaxtXQo1ezSpKN8lVBXUwg9PuJ-9P07fJbLh4eZ5PxouhTjluh5pyYSinGZC8IFSINK2AVyyXBcdYS25MljPJykoLblJecB3_Mq201CLXPO0n8863dLBRW28_wB-UA6v-BOdXCnxrdW0UTxkWJeasgIqBEUABAyMxBoQADdHrrvPaerfbm9Cqjdv72EFQNGZKTGQmI_XQUdq7ELypzqkEq2P96li_OtUf8fsOX9umhE_7P_0L-UWDlA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2683801858</pqid></control><display><type>article</type><title>Linear Stability Analysis of the Cahn–Hilliard Equation in Spinodal Region</title><source>Publicly Available Content Database</source><source>Wiley Open Access</source><creator>Ham, Seokjun ; Jeong, Darae ; Kim, Hyundong ; Lee, Chaeyoung ; Kwak, Soobin ; Hwang, Youngjin ; Kim, Junseok</creator><contributor>Sugimoto, Mitsuru</contributor><creatorcontrib>Ham, Seokjun ; Jeong, Darae ; Kim, Hyundong ; Lee, Chaeyoung ; Kwak, Soobin ; Hwang, Youngjin ; Kim, Junseok ; Sugimoto, Mitsuru</creatorcontrib><description>We study a linear stability analysis for the Cahn–Hilliard (CH) equation at critical and off-critical compositions. The CH equation is solved by the linearly stabilized splitting scheme and the Fourier-spectral method. We define the analytic and numerical growth rates and compare these growth rates with respect to the different average levels. In this study, the linear stability analysis is conducted by classifying three average levels such as zero average, spinodal average, and near critical point levels of free energy function, in the one-dimensional (1D) space. The numerical results provide insight for the dynamics of CH equation at critical and off-critical compositions.</description><identifier>ISSN: 2314-8896</identifier><identifier>EISSN: 2314-8888</identifier><identifier>DOI: 10.1155/2022/2970876</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Composition ; Critical point ; Energy ; Experiments ; Free energy ; Growth rate ; Numerical analysis ; Partial differential equations ; Spectral methods ; Stability analysis</subject><ispartof>Journal of function spaces, 2022, Vol.2022, p.1-11</ispartof><rights>Copyright © 2022 Seokjun Ham et al.</rights><rights>Copyright © 2022 Seokjun Ham et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c360t-c267e2625a19b127733fa6f498b600c86ee59484dfc76e36b6cfa683fc8c79c63</cites><orcidid>0000-0002-0484-9189</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2683801858/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2683801858?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,4010,25730,27899,27900,27901,36988,44565,75095</link.rule.ids></links><search><contributor>Sugimoto, Mitsuru</contributor><creatorcontrib>Ham, Seokjun</creatorcontrib><creatorcontrib>Jeong, Darae</creatorcontrib><creatorcontrib>Kim, Hyundong</creatorcontrib><creatorcontrib>Lee, Chaeyoung</creatorcontrib><creatorcontrib>Kwak, Soobin</creatorcontrib><creatorcontrib>Hwang, Youngjin</creatorcontrib><creatorcontrib>Kim, Junseok</creatorcontrib><title>Linear Stability Analysis of the Cahn–Hilliard Equation in Spinodal Region</title><title>Journal of function spaces</title><description>We study a linear stability analysis for the Cahn–Hilliard (CH) equation at critical and off-critical compositions. The CH equation is solved by the linearly stabilized splitting scheme and the Fourier-spectral method. We define the analytic and numerical growth rates and compare these growth rates with respect to the different average levels. In this study, the linear stability analysis is conducted by classifying three average levels such as zero average, spinodal average, and near critical point levels of free energy function, in the one-dimensional (1D) space. The numerical results provide insight for the dynamics of CH equation at critical and off-critical compositions.</description><subject>Composition</subject><subject>Critical point</subject><subject>Energy</subject><subject>Experiments</subject><subject>Free energy</subject><subject>Growth rate</subject><subject>Numerical analysis</subject><subject>Partial differential equations</subject><subject>Spectral methods</subject><subject>Stability analysis</subject><issn>2314-8896</issn><issn>2314-8888</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kMFKAzEURQdRsNTu_ICAS61NMpkksyyl2kJBsLoObzKZNmWctMkU6c5_8A_9ElOndOnbvMd9h3vhJsktwY-EZNmIYkpHNBdYCn6R9GhK2FDGuTzfOb9OBiFsMMaE5IRlWS9ZLGxjwKNlC4WtbXtA4wbqQ7ABuQq1a4MmsG5-vr5ntq4t-BJNd3torWuQbdByaxtXQo1ezSpKN8lVBXUwg9PuJ-9P07fJbLh4eZ5PxouhTjluh5pyYSinGZC8IFSINK2AVyyXBcdYS25MljPJykoLblJecB3_Mq201CLXPO0n8863dLBRW28_wB-UA6v-BOdXCnxrdW0UTxkWJeasgIqBEUABAyMxBoQADdHrrvPaerfbm9Cqjdv72EFQNGZKTGQmI_XQUdq7ELypzqkEq2P96li_OtUf8fsOX9umhE_7P_0L-UWDlA</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Ham, Seokjun</creator><creator>Jeong, Darae</creator><creator>Kim, Hyundong</creator><creator>Lee, Chaeyoung</creator><creator>Kwak, Soobin</creator><creator>Hwang, Youngjin</creator><creator>Kim, Junseok</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PATMY</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0484-9189</orcidid></search><sort><creationdate>2022</creationdate><title>Linear Stability Analysis of the Cahn–Hilliard Equation in Spinodal Region</title><author>Ham, Seokjun ; Jeong, Darae ; Kim, Hyundong ; Lee, Chaeyoung ; Kwak, Soobin ; Hwang, Youngjin ; Kim, Junseok</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-c267e2625a19b127733fa6f498b600c86ee59484dfc76e36b6cfa683fc8c79c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Composition</topic><topic>Critical point</topic><topic>Energy</topic><topic>Experiments</topic><topic>Free energy</topic><topic>Growth rate</topic><topic>Numerical analysis</topic><topic>Partial differential equations</topic><topic>Spectral methods</topic><topic>Stability analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ham, Seokjun</creatorcontrib><creatorcontrib>Jeong, Darae</creatorcontrib><creatorcontrib>Kim, Hyundong</creatorcontrib><creatorcontrib>Lee, Chaeyoung</creatorcontrib><creatorcontrib>Kwak, Soobin</creatorcontrib><creatorcontrib>Hwang, Youngjin</creatorcontrib><creatorcontrib>Kim, Junseok</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Agriculture &amp; Environmental Science Database</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Directory of Open Access Journals</collection><jtitle>Journal of function spaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ham, Seokjun</au><au>Jeong, Darae</au><au>Kim, Hyundong</au><au>Lee, Chaeyoung</au><au>Kwak, Soobin</au><au>Hwang, Youngjin</au><au>Kim, Junseok</au><au>Sugimoto, Mitsuru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linear Stability Analysis of the Cahn–Hilliard Equation in Spinodal Region</atitle><jtitle>Journal of function spaces</jtitle><date>2022</date><risdate>2022</risdate><volume>2022</volume><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>2314-8896</issn><eissn>2314-8888</eissn><abstract>We study a linear stability analysis for the Cahn–Hilliard (CH) equation at critical and off-critical compositions. The CH equation is solved by the linearly stabilized splitting scheme and the Fourier-spectral method. We define the analytic and numerical growth rates and compare these growth rates with respect to the different average levels. In this study, the linear stability analysis is conducted by classifying three average levels such as zero average, spinodal average, and near critical point levels of free energy function, in the one-dimensional (1D) space. The numerical results provide insight for the dynamics of CH equation at critical and off-critical compositions.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2022/2970876</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-0484-9189</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2314-8896
ispartof Journal of function spaces, 2022, Vol.2022, p.1-11
issn 2314-8896
2314-8888
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_63407d064baf4ae7a2a0a4100ca77aca
source Publicly Available Content Database; Wiley Open Access
subjects Composition
Critical point
Energy
Experiments
Free energy
Growth rate
Numerical analysis
Partial differential equations
Spectral methods
Stability analysis
title Linear Stability Analysis of the Cahn–Hilliard Equation in Spinodal Region
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T12%3A34%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linear%20Stability%20Analysis%20of%20the%20Cahn%E2%80%93Hilliard%20Equation%20in%20Spinodal%20Region&rft.jtitle=Journal%20of%20function%20spaces&rft.au=Ham,%20Seokjun&rft.date=2022&rft.volume=2022&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=2314-8896&rft.eissn=2314-8888&rft_id=info:doi/10.1155/2022/2970876&rft_dat=%3Cproquest_doaj_%3E2683801858%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c360t-c267e2625a19b127733fa6f498b600c86ee59484dfc76e36b6cfa683fc8c79c63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2683801858&rft_id=info:pmid/&rfr_iscdi=true