Loading…
Enhancing combinatorial optimization with classical and quantum generative models
Devising an efficient exploration of the search space is one of the key challenges in the design of combinatorial optimization algorithms. Here, we introduce the Generator-Enhanced Optimization (GEO) strategy: a framework that leverages any generative model (classical, quantum, or quantum-inspired)...
Saved in:
Published in: | Nature communications 2024-03, Vol.15 (1), p.2761-2761, Article 2761 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Devising an efficient exploration of the search space is one of the key challenges in the design of combinatorial optimization algorithms. Here, we introduce the Generator-Enhanced Optimization (GEO) strategy: a framework that leverages any generative model (classical, quantum, or quantum-inspired) to solve optimization problems. We focus on a quantum-inspired version of GEO relying on tensor-network Born machines, and referred to hereafter as TN-GEO. To illustrate our results, we run these benchmarks in the context of the canonical cardinality-constrained portfolio optimization problem by constructing instances from the S&P 500 and several other financial stock indexes, and demonstrate how the generalization capabilities of these quantum-inspired generative models can provide real value in the context of an industrial application. We also comprehensively compare state-of-the-art algorithms and show that TN-GEO is among the best; a remarkable outcome given the solvers used in the comparison have been fine-tuned for decades in this real-world industrial application. Also, a promising step toward a practical advantage with quantum-inspired models and, subsequently, with quantum generative models
Solving combinatorial optimization problems using quantum or quantum-inspired machine learning models would benefit from strategies able to work with arbitrary objective functions. Here, the authors use the power of generative models to realise such a black-box solver, and show promising performances on some portfolio optimization examples. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-024-46959-5 |