Loading…
Numerical Reconstruction of the Covariance Matrix of a Spherically Truncated Multinormal Distribution
We relate the matrix SB of the second moments of a spherically truncated normal multivariate to its full covariance matrix Σ and present an algorithm to invert the relation and reconstruct Σ from SB. While the eigenvectors of Σ are left invariant by the truncation, its eigenvalues are nonuniformly d...
Saved in:
Published in: | Journal of probability and statistics 2017-01, Vol.2017 (2017), p.1-24 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We relate the matrix SB of the second moments of a spherically truncated normal multivariate to its full covariance matrix Σ and present an algorithm to invert the relation and reconstruct Σ from SB. While the eigenvectors of Σ are left invariant by the truncation, its eigenvalues are nonuniformly damped. We show that the eigenvalues of Σ can be reconstructed from their truncated counterparts via a fixed point iteration, whose convergence we prove analytically. The procedure requires the computation of multidimensional Gaussian integrals over an Euclidean ball, for which we extend a numerical technique, originally proposed by Ruben in 1962, based on a series expansion in chi-square distributions. In order to study the feasibility of our approach, we examine the convergence rate of some iterative schemes on suitably chosen ensembles of Wishart matrices. We finally discuss the practical difficulties arising in sample space and outline a regularization of the problem based on perturbation theory. |
---|---|
ISSN: | 1687-952X 1687-9538 |
DOI: | 10.1155/2017/6579537 |