Loading…

Bilinear Multipliers on Banach Function Spaces

Let X 1 , X 2 , X 3 be Banach spaces of measurable functions in L 0 ( R ) and let m ( ξ , η ) be a locally integrable function in R 2 . We say that m ∈ B M ( X 1 , X 2 , X 3 ) ( R ) if B m ( f , g ) ( x ) = ∫ R ∫ R f ^ ( ξ ) g ^ ( η ) m ( ξ , η ) e 2 π i < ξ + η , x > d ξ d η , defined for f a...

Full description

Saved in:
Bibliographic Details
Published in:Journal of function spaces 2019-01, Vol.2019 (2019), p.1-11
Main Author: Blasco, Oscar
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Let X 1 , X 2 , X 3 be Banach spaces of measurable functions in L 0 ( R ) and let m ( ξ , η ) be a locally integrable function in R 2 . We say that m ∈ B M ( X 1 , X 2 , X 3 ) ( R ) if B m ( f , g ) ( x ) = ∫ R ∫ R f ^ ( ξ ) g ^ ( η ) m ( ξ , η ) e 2 π i < ξ + η , x > d ξ d η , defined for f and g with compactly supported Fourier transform, extends to a bounded bilinear operator from X 1 × X 2 to X 3 . In this paper we investigate some properties of the class B M ( X 1 , X 2 , X 3 ) ( R ) for general spaces which are invariant under translation, modulation, and dilation, analyzing also the particular case of r.i. Banach function spaces. We shall give some examples in this class and some procedures to generate new bilinear multipliers. We shall focus on the case m ( ξ , η ) = M ( ξ - η ) and find conditions for these classes to contain nonzero multipliers in terms of the Boyd indices for the spaces.
ISSN:2314-8896
2314-8888
DOI:10.1155/2019/7639380