Loading…

Entanglement spectrum of geometric states

A bstract The reduced density matrix of a given subsystem, denoted by ρ A , contains the information on subregion duality in a holographic theory. We may extract the information by using the spectrum (eigenvalue) of the matrix, called entanglement spectrum in this paper. We evaluate the density of e...

Full description

Saved in:
Bibliographic Details
Published in:The journal of high energy physics 2021-02, Vol.2021 (2), p.1-33, Article 85
Main Author: Guo, Wu-zhong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A bstract The reduced density matrix of a given subsystem, denoted by ρ A , contains the information on subregion duality in a holographic theory. We may extract the information by using the spectrum (eigenvalue) of the matrix, called entanglement spectrum in this paper. We evaluate the density of eigenstates, one-point and two-point correlation functions in the microcanonical ensemble state ρ A,m associated with an eigenvalue λ for some examples, including a single interval and two intervals in vacuum state of 2D CFTs. We find there exists a microcanonical ensemble state with λ 0 which can be seen as an approximate state of ρ A . The parameter λ 0 is obtained in the two examples. For a general geometric state, the approximate microcanonical ensemble state also exists. The parameter λ 0 is associated with the entanglement entropy of A and Rényi entropy in the limit n → ∞ . As an application of the above conclusion we reform the equality case of the Araki-Lieb inequality of the entanglement entropies of two intervals in vacuum state of 2D CFTs as conditions of Holevo information. We show the constraints on the eigenstates. Finally, we point out some unsolved problems and their significance on understanding the geometric states.
ISSN:1029-8479
1029-8479
DOI:10.1007/JHEP02(2021)085