Loading…
Homomorphically Full Oriented Graphs
Homomorphically full graphs are those for which every homomorphic image is isomorphic to a subgraph. We extend the definition of homomorphically full to oriented graphs in two different ways. For the first of these, we show that homomorphically full oriented graphs arise as quasi-transitive orientat...
Saved in:
Published in: | Discrete mathematics and theoretical computer science 2023-01, Vol.25:2 (Graph Theory), p.1-14 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Homomorphically full graphs are those for which every homomorphic image is
isomorphic to a subgraph. We extend the definition of homomorphically full to
oriented graphs in two different ways. For the first of these, we show that
homomorphically full oriented graphs arise as quasi-transitive orientations of
homomorphically full graphs. This in turn yields an efficient recognition and
construction algorithms for these homomorphically full oriented graphs. For the
second one, we show that the related recognition problem is GI-hard, and that
the problem of deciding if a graph admits a homomorphically full orientation is
NP-complete. In doing so we show the problem of deciding if two given oriented
cliques are isomorphic is GI-complete. |
---|---|
ISSN: | 1365-8050 1365-8050 |
DOI: | 10.46298/dmtcs.9957 |