Loading…
Shish-kebab structure fiber with nano and micro diameter regulate macrophage polarization for anti-inflammatory and bone differentiation
Biopolymer grafts often have limited biocompatibility, triggering excessive inflammatory responses similar to foreign bodies. Macrophage phenotype shifts are pivotal in the inflammatory response and graft success. The effects of the morphology and physical attributes of the material itself on macrop...
Saved in:
Published in: | Materials today bio 2023-12, Vol.23, p.100880-100880, Article 100880 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Biopolymer grafts often have limited biocompatibility, triggering excessive inflammatory responses similar to foreign bodies. Macrophage phenotype shifts are pivotal in the inflammatory response and graft success. The effects of the morphology and physical attributes of the material itself on macrophage polarization should be the focus. In this study, we prepared electrospun fibers with diverse diameters and formed a shish-kebab (SK) structure on the material surface by solution-induced crystallization, forming electrospun fiber scaffolds with diverse pore sizes and roughness. In vitro cell culture experiments demonstrated that SK structure fibers could regulate macrophage differentiation toward M2 phenotype, and the results of in vitro simulation of in vivo tissue reconstruction by the microenvironment demonstrated that the paracrine role of M2 phenotype macrophages could promote bone marrow mesenchymal stem cells (BMSCs) to differentiate into osteoblasts. In rats implanted with a subcutaneous SK-structured fiber scaffold, the large-pore size and low-stiffness SK fiber scaffolds demonstrated superior immune performance, less macrophage aggregation, and easier differentiation to the anti-inflammatory M2 phenotype. Large pore sizes and low-stiffness SK fiber scaffolds guide the morphological design of biological scaffolds implanted in vivo, which is expected to be an effective strategy for reducing inflammation when applied to graft materials in clinical settings.
[Display omitted]
•Combining electrospinning and crystallization formed SK-structured fiber scaffolds with diverse properties.•Large-pore, low-stiffness SK fiber scaffolds guide macrophage differentiation and enhance anti-inflammatory responses.•M2 macrophages stimulate mesenchymal stem cells to differentiate into osteoblasts through paracrine signaling.•The large-pore size and low-stiffness SK fiber scaffolds decrease in vivo macrophage aggregation, mitigating inflammation. |
---|---|
ISSN: | 2590-0064 2590-0064 |
DOI: | 10.1016/j.mtbio.2023.100880 |