Loading…

Boundary Value Problems for Delay Differential Systems

Conditions are derived of the existence of solutions of linear Fredholm's boundary-value problems for systems of ordinary differential equations with constant coefficients and a single delay, assuming that these solutions satisfy the initial and boundary conditions. Utilizing a delayed matrix e...

Full description

Saved in:
Bibliographic Details
Published in:Advances in difference equations 2010-01, Vol.2010 (1), p.1-20
Main Authors: Boichuk, A., Diblík, J., Khusainov, D., Růžičková, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Conditions are derived of the existence of solutions of linear Fredholm's boundary-value problems for systems of ordinary differential equations with constant coefficients and a single delay, assuming that these solutions satisfy the initial and boundary conditions. Utilizing a delayed matrix exponential and a method of pseudoinverse by Moore-Penrose matrices led to an explicit and analytical form of a criterion for the existence of solutions in a relevant space and, moreover, to the construction of a family of linearly independent solutions of such problems in a general case with the number of boundary conditions (defined by a linear vector functional) not coinciding with the number of unknowns of a differential system with a single delay. As an example of application of the results derived, the problem of bifurcation of solutions of boundary-value problems for systems of ordinary differential equations with a small parameter and with a finite number of measurable delays of argument is considered.
ISSN:1687-1839
1687-1847
DOI:10.1155/2010/593834