Loading…
An Extension of the Carathéodory Differentiability to Set-Valued Maps
This paper uses the generalization of the Hukuhara difference for compact convex set to extend the classical notions of Carathéodory differentiability to multifunctions (set-valued maps). Using the Hukuhara difference and affine multifunctions as a local approximation, we introduce the notion of CH-...
Saved in:
Published in: | Abstract and applied analysis 2021, Vol.2021, p.1-8 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper uses the generalization of the Hukuhara difference for compact convex set to extend the classical notions of Carathéodory differentiability to multifunctions (set-valued maps). Using the Hukuhara difference and affine multifunctions as a local approximation, we introduce the notion of CH-differentiability for multifunctions. Finally, we tackle the study of the relation among the Fréchet differentiability, Hukuhara differentiability, and CH-differentiability. |
---|---|
ISSN: | 1085-3375 1687-0409 |
DOI: | 10.1155/2021/5529796 |