Loading…
The regulatory relationship between NAMPT and PD-L1 in cancer and identification of a dual-targeting inhibitor
Cancer is a heterogeneous disease. Although both tumor metabolism and tumor immune microenvironment are recognized as driving factors in tumorigenesis, the relationship between them is still not well-known, and potential combined targeting approaches remain to be identified. Here, we demonstrated a...
Saved in:
Published in: | EMBO molecular medicine 2024-04, Vol.16 (4), p.885-903 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Cancer is a heterogeneous disease. Although both tumor metabolism and tumor immune microenvironment are recognized as driving factors in tumorigenesis, the relationship between them is still not well-known, and potential combined targeting approaches remain to be identified. Here, we demonstrated a negative correlation between the expression of NAMPT, an NAD
+
metabolism enzyme, and PD-L1 expression in various cancer cell lines. A clinical study showed that a NAMPT
High
PD-L1
Low
expression pattern predicts poor prognosis in patients with various cancers. In addition, pharmacological inhibition of NAMPT results in the transcription upregulation of PD-L1 by SIRT-mediated acetylation change of NF-κB p65, and blocking PD-L1 would induce NAMPT expression through a HIF-1-dependent glycolysis pathway. Based on these findings, we designed and synthesized a dual NAMPT/PD-L1 targeting compound, LZFPN-90, which inhibits cell growth in a NAMPT-dependent manner and blocks the cell cycle, subsequently inducing apoptosis. Under co-culture conditions, LZFPN-90 treatment contributes to the proliferation and activation of T cells and blocks the growth of cancer cells. Using mice bearing genetically manipulated tumors, we confirmed that LZFPN-90 exerted target-dependent antitumor activities, affecting metabolic processes and the immune system. In conclusion, our results demonstrate the relevance of NAD
+
-related metabolic processes in antitumor immunity and suggest that co-targeting NAD
+
metabolism and PD-L1 represents a promising therapeutic approach.
Synopsis
The proposed interaction of NAMPT and PD-L1 and their dual targeting by LZFPN-90 were explored, raising the possibility that the pharmacological blockade of NAMPT and simultaneous immune checkpoint blockade represent a promising strategy for cancer therapy.
The expression of PD-L1 and NAMPT is negatively correlated by epigenetic and glycolysis regulatory mechanisms.
Pharmacological inhibition of NAMPT results in the transcription upregulation of PD-L1 by SIRT-mediated acetylation change of NF-κB p65.
Blocking PD-L1 induces NAMPT expression through a HIF-1-dependent glycolysis pathway.
The PD-1/PD-L1 interaction and NAMPT activity are effectively inhibited by the dual NAMPT/PD-L1 targeting compound LZFPN-90.
The proposed interaction of NAMPT and PD-L1 and their dual targeting by LZFPN-90 were explored, raising the possibility that the pharmacological blockade of NAMPT and simultaneous immune checkpoint blockade repr |
---|---|
ISSN: | 1757-4684 1757-4676 1757-4684 |
DOI: | 10.1038/s44321-024-00051-z |