Loading…

Pharmaceutical composition of hydrochlorothiazide:β-cyclo-dextrin: preparation by three different methods, physico-chemical characterization and in vivo diuretic activity evaluation

Hydrochlorothiazide is a common diuretic antihypertensive drug of the thiazide family. Its poor aqueous solubility is one of the reasons for its limited bioavailability after oral administration. This work aimed at the development of a hydrochlorothiazide:β-cyclodextrin (HTZ:β-CD) pharmaceutical com...

Full description

Saved in:
Bibliographic Details
Published in:Molecules (Basel, Switzerland) Switzerland), 2011-05, Vol.16 (6), p.4482-4499
Main Authors: Pires, Maria Arlete Silva, Souza Dos Santos, Robson Augusto, Sinisterra, Rubén Dario
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Hydrochlorothiazide is a common diuretic antihypertensive drug of the thiazide family. Its poor aqueous solubility is one of the reasons for its limited bioavailability after oral administration. This work aimed at the development of a hydrochlorothiazide:β-cyclodextrin (HTZ:β-CD) pharmaceutical composition in order to improve water solubility and bioavailability of the drug. The HTZ:β-CD complexes were prepared by three different methods: spray-drying, freeze-drying and fluid bed. Complexes were characterized by thermal analysis, Fourier transform-infrared (FTIR) spectroscopy, powder X-ray diffractometry, NMR (2D-ROESY), scanning electron microscopy (SEM), particle analysis and intrinsic dissolution. The findings reveal that three binary systems prepared presented better solubility results in comparison with free HTZ. Increased diuretic effect was observed to HTZ:β-CD obtained by fluid bed in comparison to free drug in rats. Results taken together suggest that pharmacological effect of HTZ in complex was increased by solubility improvement promoted by cyclodextrin.
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules16064482