Loading…
Microscale chemical imaging to characterize and quantify corrosion processes at the metal-electrolyte interface
We introduce an experimental setup to chemically image corrosion processes at metal-electrolyte interfaces under stagnant, confined conditions—relevant in a wide range of situations. The setup is based on a glass capillary, in which precipitation of corrosion products in the interfacial aqueous phas...
Saved in:
Published in: | Npj Materials degradation 2024-01, Vol.8 (1), p.116-9, Article 116 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We introduce an experimental setup to chemically image corrosion processes at metal-electrolyte interfaces under stagnant, confined conditions—relevant in a wide range of situations. The setup is based on a glass capillary, in which precipitation of corrosion products in the interfacial aqueous phase can be monitored over time with optical microscopy, and chemically and structurally characterized with microscopic synchrotron-based techniques (X-ray fluorescence, X-ray diffraction, and X-ray absorption spectroscopy). Moreover, quantification of precipitates through X-ray transmission measurements provides in-situ corrosion rates. We illustrate this setup for iron corrosion in a pH 8 electrolyte, revealing the critical role of O
2
and iron diffusion in governing the precipitation of ferrihydrite and its transformation to goethite. Corrosion and coupled reactive transport processes can thus be monitored and fundamentally investigated at the metal-electrolyte interface, with micrometer-scale resolution. This capillary setup has potential applications for in-situ corrosion studies of various metals and environments. |
---|---|
ISSN: | 2397-2106 2397-2106 |
DOI: | 10.1038/s41529-024-00534-x |