Loading…

Prediction and Analysis of Axial Stress of Piles for Piled Raft Due to Adjacent Tunneling Using Explainable AI

Tunneling, especially in urban areas, affects many structures on the ground, which directly influences the usability and stability of the structures. The settlement of and axial stress on the pile foundation are important factors that determine the behavioral characteristics of the pile foundation....

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2023-05, Vol.13 (10), p.6074
Main Authors: Oh, Dong-Wook, Kong, Suk-Min, Kim, Su-Bin, Lee, Yong-Joo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Tunneling, especially in urban areas, affects many structures on the ground, which directly influences the usability and stability of the structures. The settlement of and axial stress on the pile foundation are important factors that determine the behavioral characteristics of the pile foundation. Therefore, this study uses numerical analysis and machine learning to derive a prediction model of pile axial stress due to tunnel excavation adjacent to the piled raft. Numerical analysis data were utilized for machine learning purposes, and the effects of the input data on the prediction model were scrutinized. The numerical analysis revealed that the change in the pile axial stress resulting from tunnel excavation differed depending on the pile’s location, with the greatest axial stress reduction occurring in the center of the piled raft. Furthermore, the rate of reduction was higher in soils with lower relative densities. Several algorithms were employed to derive the prediction model, with tree-based algorithms displaying notable performance in predicting pile axial stress. Additionally, preprocessing the data with appropriate feature engineering techniques exhibited superior predictive power, and incorporating settlement data aided in enhancing the prediction model’s performance.
ISSN:2076-3417
2076-3417
DOI:10.3390/app13106074