Loading…

ProtInteract: A deep learning framework for predicting protein–protein interactions

Proteins mainly perform their functions by interacting with other proteins. Protein–protein interactions underpin various biological activities such as metabolic cycles, signal transduction, and immune response. However, due to the sheer number of proteins, experimental methods for finding interacti...

Full description

Saved in:
Bibliographic Details
Published in:Computational and structural biotechnology journal 2023-01, Vol.21, p.1324-1348
Main Authors: Soleymani, Farzan, Paquet, Eric, Viktor, Herna Lydia, Michalowski, Wojtek, Spinello, Davide
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Proteins mainly perform their functions by interacting with other proteins. Protein–protein interactions underpin various biological activities such as metabolic cycles, signal transduction, and immune response. However, due to the sheer number of proteins, experimental methods for finding interacting and non-interacting protein pairs are time-consuming and costly. We therefore developed the ProtInteract framework to predict protein–protein interaction. ProtInteract comprises two components: first, a novel autoencoder architecture that encodes each protein’s primary structure to a lower-dimensional vector while preserving its underlying sequence attributes. This leads to faster training of the second network, a deep convolutional neural network (CNN) that receives encoded proteins and predicts their interaction under three different scenarios. In each scenario, the deep CNN predicts the class of a given encoded protein pair. Each class indicates different ranges of confidence scores corresponding to the probability of whether a predicted interaction occurs or not. The proposed framework features significantly low computational complexity and relatively fast response. The contributions of this work are twofold. First, ProtInteract assimilates the protein’s primary structure into a pseudo-time series. Therefore, we leverage the nature of the time series of proteins and their physicochemical properties to encode a protein’s amino acid sequence into a lower-dimensional vector space. This approach enables extracting highly informative sequence attributes while reducing computational complexity. Second, the ProtInteract framework utilises this information to identify protein interactions with other proteins based on its amino acid configuration. Our results suggest that the proposed framework performs with high accuracy and efficiency in predicting protein-protein interactions. [Display omitted]
ISSN:2001-0370
2001-0370
DOI:10.1016/j.csbj.2023.01.028