Loading…
Analysing the influence of ground granulated blast furnace slag and steel fibre on RC beams flexural behaviour
This study examines the effect of Ground Granulated Blast Furnace Slag ( GGBS) and steel fibers on the flexural behaviour of RC beams under monotonic loading. Various percentages of GGBS were used to substitute cement, namely 0%, 20%, 40%, 60%, and 80% and fibers were added to the concrete mix as 0%...
Saved in:
Published in: | Scientific reports 2024-02, Vol.14 (1), p.4914-4914, Article 4914 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This study examines the effect of Ground Granulated Blast Furnace Slag
(
GGBS) and steel fibers on the flexural behaviour of RC beams under monotonic loading. Various percentages of GGBS were used to substitute cement, namely 0%, 20%, 40%, 60%, and 80% and fibers were added to the concrete mix as 0%, 0.5%, 1%, and 1.5% of the volume of concrete. The load–deflection behaviour of GGBS-incorporated RC beams with fibers was compared with the control RC beam. Beams were tested under load control for 28 days and 180 days. The ultimate load of the GGBS-incorporated RC beam up to 40% cement replacement was found to higher than that of the control beam. The strength of concrete is reduced by 28% and 19% when cement was partially replaced by 80% of GGBS at 28 and 180 days, respectively, compared to control concrete without fibres. Further, the analytical load–deflection response of GGBS-incorporated RC beams was determined by using several codes of practice, namely, ACI 318-11(2011), CSA A23.3-04 (2004), EC-04 (2004), and IS 456 (2000). The Codal provisions were primarily based on the effective moment of inertia, Young’s modulus, and modulus of rupture, stiffness, and cracking. Average load–deflection plots obtained from experiments were compared with the computed load–deflection of analytical studies. It was found that the analytically predicted load–deflection behaviour is comparable with the corresponding average experimental load–deflection response. Moment curvature relations were also developed for RC beams. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-024-51164-x |