Loading…

Inverse K-Chevalley formulas for semi-infinite flag manifolds, I: minuscule weights in ADE type

We prove an explicit inverse Chevalley formula in the equivariant K-theory of semi-infinite flag manifolds of simply laced type. By an ‘inverse Chevalley formula’ we mean a formula for the product of an equivariant scalar with a Schubert class, expressed as a $\mathbb {Z}\left [q^{\pm 1}\right ]$ -l...

Full description

Saved in:
Bibliographic Details
Published in:Forum of mathematics. Sigma 2021, Vol.9, Article e51
Main Authors: Kouno, Takafumi, Naito, Satoshi, Orr, Daniel, Sagaki, Daisuke
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We prove an explicit inverse Chevalley formula in the equivariant K-theory of semi-infinite flag manifolds of simply laced type. By an ‘inverse Chevalley formula’ we mean a formula for the product of an equivariant scalar with a Schubert class, expressed as a $\mathbb {Z}\left [q^{\pm 1}\right ]$ -linear combination of Schubert classes twisted by equivariant line bundles. Our formula applies to arbitrary Schubert classes in semi-infinite flag manifolds of simply laced type and equivariant scalars $e^{\lambda }$ , where $\lambda $ is an arbitrary minuscule weight. By a result of Stembridge, our formula completely determines the inverse Chevalley formula for arbitrary weights in simply laced type except for type $E_8$ . The combinatorics of our formula is governed by the quantum Bruhat graph, and the proof is based on a limit from the double affine Hecke algebra. Thus our formula also provides an explicit determination of all nonsymmetric q-Toda operators for minuscule weights in ADE type.
ISSN:2050-5094
2050-5094
DOI:10.1017/fms.2021.45